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Getting Started

This chapter contains two examples to get you started doing image processing
using MATLAB® and the Image Processing Toolbox™ software. The examples
contain cross-references to other sections in the documentation manual that
have in-depth discussions on the concepts presented in the examples.

Product Overview (p. 1-2)

Example 1 — Some Basic Concepts
(p. 1-4)

Example 2 — Advanced Topics
(p. 1-11)

Getting Help (p. 1-25)

Image Credits (p. 1-27)

Introduces the product and describes
its capabilities

Guides you through an example of
some of the basic image processing
capabilities of the toolbox, including
reading, writing, and displaying
images

Guides you through some advanced
image processing topics, including
components labeling, object property
measurement, image arithmetic,
morphological image processing, and
contrast enhancement

Provides pointers to additional
sources of information

Provides information about the
sources of the images used in the
documentation



1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2
“Configuration Notes” on page 1-3

“Related Products” on page 1-3

“Compilability” on page 1-3

Introduction

The Image Processing Toolbox™ software is a collection of functions that
extend the capability of the MATLAB® numeric computing environment. The
toolbox supports a wide range of image processing operations, including
e Spatial image transformations

¢ Morphological operations

¢ Neighborhood and block operations

¢ Linear filtering and filter design

® Transforms

¢ Image analysis and enhancement

* Image registration

¢ Deblurring

¢ Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB

statements that implement specialized image processing algorithms. You can
view the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the toolbox by writing your own M-files, or
by using the toolbox in combination with other toolboxes, such as the Signal
Processing Toolbox™ software and the Wavelet Toolbox™ software.



Product Overview

For a list of the new features in this version of the toolbox, see the Release
Notes documentation.

Configuration Notes

To determine if the Image Processing Toolbox software is installed on your
system, type this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the installation guide for
your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at The MathWorks
Web site (www.mathworks.com).

Related Products

The MathWorks provides several products that are relevant to the kinds

of tasks you can perform with the Image Processing Toolbox software and
that extend the capabilities of MATLAB. For information about these related
products, see www.mathworks.com/products/image/related.html.

Compilability

The Image Processing Toolbox software is compilable with the MATLAB®
Compiler™ except for the following functions that launch GUIs:

® cpselect

® implay

® imtool

1-3
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1 Getting Started

Example 1 — Some Basic Concepts

In this section...

“Introduction” on page 1-4

“Step 1: Read and Display an Image” on page 1-4

“Step 2: Check How the Image Appears in the Workspace” on page 1-5
“Step 3: Improve Image Contrast” on page 1-6

“Step 4: Write the Image to a Disk File” on page 1-8

“Step 5: Check the Contents of the Newly Written File” on page 1-9

Introduction

This example introduces some basic image processing concepts. The example
starts by reading an image into the MATLAB workspace. The example then
performs some contrast adjustment on the image. Finally, the example writes
the adjusted image to a file.

Step 1: Read and Display an Image

First, clear the MATLAB® workspace of any variables and close open figure
windows.

close all

To read an image, use the imread command. The example reads one of the
sample images included with the toolbox, pout.tif, and stores it in an array
named I.

I = imread('pout.tif');

imread infers from the file that the graphics file format is Tagged Image File
Format (TIFF). For the list of supported graphics file formats, see the imread
function reference documentation.

Now display the image. The toolbox includes two image display functions:
imshow and imtool. imshow is the toolbox’s fundamental image display
function. imtool starts the Image Tool which presents an integrated
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environment for displaying images and performing some common image
processing tasks. The Image Tool provides all the image display capabilities
of imshow but also provides access to several other tools for navigating and
exploring images, such as scroll bars, the Pixel Region tool, Image Information
tool, and the Contrast Adjustment tool. For more information, see Chapter 4,
“Displaying and Exploring Images”. You can use either function to display an
image. This example uses imshow.

imshow(I)

Grayscale Image pout.tif

Step 2: Check How the Image Appears in the
Workspace

To see how the imread function stores the image data in the workspace, check
the Workspace browser in the MATLAB desktop. The Workspace browser
displays information about all the variables you create during a MATLAB
session. The imread function returned the image data in the variable I, which
is a 291-by-240 element array of uint8 data. MATLAB can store images

as uint8, uint16, or double arrays.

You can also get information about variables in the workspace by calling the
whos command.

whos

MATLAB responds with
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Name Size Bytes Class Attributes
I 291x240 69840 uint8

For more information about image storage classes, see “Converting Between
Image Classes” on page 2-18.

Step 3: Improve Image Contrast

pout.tif is a somewhat low contrast image. To see the distribution of
intensities in pout.tif, you can create a histogram by calling the imhist
function. (Precede the call to imhist with the figure command so that the
histogram does not overwrite the display of the image I in the current figure
window.)

figure, imhist(I)
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Notice how the intensity range is rather narrow. It does not cover the
potential range of [0, 255], and is missing the high and low values that would
result in good contrast.

The toolbox provides several ways to improve the contrast in an image. One
way is to call the histeq function to spread the intensity values over the full
range of the image, a process called histogram equalization.
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I2 = histeq(I);

Display the new equalized image, 12, in a new figure window.

figure, imshow(I2)

Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image I2. If you
compare the two histograms, the histogram of I2 is more spread out than
the histogram of I1.

figure, imhist(I2)
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The toolbox includes several other functions that perform contrast adjustment,
including the imadjust and adapthisteq functions. See “Adjusting Pixel
Intensity Values” on page 11-35 for more information. In addition, the toolbox
includes an interactive tool, called the Adjust Contrast tool, that you can use
to adjust the contrast and brightness of an image displayed in the Image Tool.
To use this tool, call the imcontrast function or access the tool from the
Image Tool. For more information, see “Adjusting Image Contrast Using the
Adjust Contrast Tool” on page 4-43.

Step 4: Write the Image to a Disk File

To write the newly adjusted image I2 to a disk file, use the imwrite function.
If you include the filename extension '.png', the imwrite function writes
the image to a file in Portable Network Graphics (PNG) format, but you can
specify other formats.

imwrite (I2, 'pout2.png');

See the imwrite function reference page for a list of file formats it supports.
See also “Writing Image Data to a File” on page 3-5 for more information
about writing image data to files.
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Step 5: Check the Contents of the Newly Written File

To see what imwrite wrote to the disk file, use the imfinfo function.

imfinfo('pout2.png')

The imfinfo function returns information about the image in the file, such
as its format, size, width, and height. See “Getting Information About a
Graphics File” on page 3-2 for more information about using imfinfo.

ans =

Filename:
FileModDate:
FileSize:
Format:
FormatVersion:
Width:

Height:
BitDepth:
ColorType:
FormatSignature:
Colormap:
Histogram:
InterlaceType:
Transparency:
SimpleTransparencyData:
BackgroundColor:
RenderingIntent:
Chromaticities:
Gamma:
XResolution:
YResolution:
ResolutionUnit:
XOffset:
YOffset:
OffsetUnit:
SignificantBits:
ImageModTime:
Title:

"pout2.png’
'29-Dec-2005 09:34:39'
36938

'png’

[]

240

291

8

‘grayscale’

[137 80 78 71 13 10 26 10]
[]

[]

'none’

'none’

[1

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

'29 Dec 2005 14:34:39 +0000'

[1
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Author:
Description:
Copyright:
CreationTime:
Software:
Disclaimer:
Warning:
Source:
Comment:
OtherText:

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
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Example 2 — Advanced Topics

In this section...

“Introduction” on page 1-12

“Step 1: Read and Display an Image” on page 1-12

“Step 2: Estimate the Value of Background Pixels” on page 1-12

“Step 3: View the Background Approximation as a Surface” on page 1-14
“Step 4: Create an Image with a Uniform Background” on page 1-16
“Step 5: Adjust the Contrast in the Processed Image” on page 1-16

“Step 6: Create a Binary Version of the Image” on page 1-17

“Step 7: Determine the Number of Objects in the Image” on page 1-18
“Step 8: Examine the Label Matrix” on page 1-19

“Step 9: Display the Label Matrix as a Pseudocolor Indexed Image” on
page 1-21

“Step 10: Measure Object Properties in the Image” on page 1-21

“Step 11: Compute Statistical Properties of Objects in the Image” on page
1-23
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Introduction

This example introduces some advanced image processing concepts, such as
calculating statistics about objects in the image. The example performs some
preprocessing of the image, such as evening out the background illumination
and converting the image into a binary image, that help achieve better results
in the statistics calculation.

Step 1: Read and Display an Image

First, clear the MATLAB® workspace of any variables, close open figure
windows, and close all open Image Tools.

close all
Read and display the grayscale image rice.png.

I = imread('rice.png');
imshow(I)

Grayscale Image rice.png

Step 2: Estimate the Value of Background Pixels

In the sample image, the background illumination is brighter in the

center of the image than at the bottom. In this step, the example uses a
morphological opening operation to estimate the background illumination.
Morphological opening is an erosion followed by a dilation, using the same
structuring element for both operations. The opening operation has the effect
of removing objects that cannot completely contain the structuring element.
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For more information about morphological image processing, see Chapter 10,
“Morphological Operations”.

1-13
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The example calls the imopen function to perform the morphological opening

operation and then calls the imshow function to view the results. Note how the
example calls the strel function to create a disk-shaped structuring element
with a radius of 15. To remove the rice grains from the image, the structuring
element must be sized so that it cannot fit entirely inside a single grain of rice.

background = imopen(I,strel('disk',15));
figure, imshow(background)

Step 3: View the Background Approximation as a
Surface

Use the surf command to create a surface display of the background
approximation background. The surf command creates colored parametric
surfaces that enable you to view mathematical functions over a rectangular
region. The surf function requires data of class double, however, so you first
need to convert background using the double command.

figure, surf(double(background(1:8:end,1:8:end))),zlim([0 255]);
set(gca, 'ydir', 'reverse');

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in
each direction; otherwise the surface plot would be too dense. The example
also sets the scale of the plot to better match the range of the uint8 data and
reverses the y-axis of the display to provide a better view of the data (the
pixels at the bottom of the image appear at the front of the surface plot).

In the surface display, [0, 0] represents the origin, or upper left corner of the
image. The highest part of the curve indicates that the highest pixel values
of background (and consequently rice.png) occur near the middle rows of
the image. The lowest pixel values occur at the bottom of the image and are
represented in the surface plot by the lowest part of the curve.
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The surface plot is a Handle Graphics® object. You can use object properties to
fine-tune its appearance. For information on working with MATLAB graphics,
see the graphics documentation.

250 4.

2000
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Step 4: Create an Image with a Uniform Background

To create a more uniform background, subtract the background image,
background, from the original image, I, and then view the image.

I2 = imsubtract(I,background);
figure, imshow(I2)

Image with Uniform Background

Step 5: Adjust the Contrast in the Processed Image

After subtraction, the image has a uniform background but is now a bit too
dark. Use imadjust to adjust the contrast of the image.imadjust increases
the contrast of the image by saturating 1% of the data at both low and high
intensities of I2 and by stretching the intensity values to fill the uint8
dynamic range. See the reference page for imadjust for more information.

1-16
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The following example adjusts the contrast in the image created in the
previous step and displays it.

I3 = imadjust(I2);
figure, imshow(I3);

Image After Intensity Adjustment

Step 6: Create a Binary Version of the Image

Create a binary version of the image so that you can use toolbox functions
to count the number of rice grains. Use the im2bw function to convert the
grayscale image into a binary image by using thresholding. The function
graythresh automatically computes an appropriate threshold to use to
convert the grayscale image to binary.

level = graythresh(I3);
bw = im2bw(I3,level);
figure, imshow(bw)

Binary Version of the Image

1-17
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The binary image bw returned by im2bw is of class logical, as can be seen in
this call to whos. The toolbox uses logical arrays to represent binary images.
For more information, see “Binary Images” on page 2-8.

whos

MATLAB responds with

Name Size Bytes Class Attributes
I 256x256 65536 uint8

12 256x256 65536 uint8

I3 256x256 65536 uint8

background 256x256 65536 uint8

bw 256x256 65536 logical

level 1x1 8 double

Step 7: Determine the Number of Objects in the
Image

After converting the image to a binary image, you can use the bwlabel
function to determine the number of grains of rice in the image. The bwlabel

function labels all the components in the binary image bw and returns the
number of components it finds in the image in the output value, numObjects.

[labeled,numObjects] = bwlabel(bw,4);
numObjects

The accuracy of the results depends on a number of factors, including

¢ The size of the objects

¢ Whether or not any objects are touching (in which case they might be
labeled as one object)

¢ The accuracy of the approximated background

¢ The connectivity selected. The parameter 4, passed to the bwlabel
function, means that pixels must touch along an edge to be considered
connected. For more information about the connectivity of objects, see
“Pixel Connectivity” on page 10-20.
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Step 8: Examine the Label Matrix

To better understand the label matrix returned by the bwlabel function, this
step explores the pixel values in the image. There are several ways to get a
close-up view of pixel values. For example, you can use imcrop to select a small
portion of the image. Another way is to use the Pixel Region tool to examine
pixel values. The following example displays the label matrix, using imshow,
and then starts a Pixel Region tool associated with the displayed image.

figure, imshow(labeled);
impixelregion

By default, the Pixel Region tool automatically associates itself with the
image in the current figure. The Pixel Region tool draws a rectangle, called
the pixel region rectangle, in the center of the visible part of the image. This
rectangle defines which pixels are displayed in the Pixel Region tool. As you
move the rectangle, the Pixel Region tool updates its display of pixel values.
For more information about using the toolbox modular interactive tools, see
Chapter 5, “Building GUIs with Modular Tools”.

1-19
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The following figure shows the Pixel Region rectangle positioned over the
edges of two rice grains. Note how all the pixels in the rice grains have the
values assigned by the bwlabel function and the background pixels have
the value 0 (zero).

Region displayed i

Pixel region rectangle Pixel Region tool
=101 x|
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|
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Examining the Label Matrix with the Pixel Region Tool
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Step 9: Display the Label Matrix as a Pseudocolor
Indexed Image

A good way to view a label matrix is to display it as a pseudocolor indexed
image. In the pseudocolor image, the number that identifies each object in the
label matrix maps to a different color in the associated colormap matrix. The
colors in the image make objects easier to distinguish.

To view a label matrix in this way, use the label2rgb function. Using this
function, you can specify the colormap, the background color, and how objects
in the label matrix map to colors in the colormap.

pseudo_color = label2rgb(labeled, @spring, 'c', 'shuffle');
figure, imshow(pseudo_color);
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Label Matrix Displayed as Pseudocolor Image

Step 10: Measure Object Properties in the Image

The regionprops command measures object or region properties in an image
and returns them in a structure array. When applied to an image with labeled
components, it creates one structure element for each component.

The following example uses regionprops to create a structure array
containing some basic properties for labeled. When you set the properties
parameter to 'basic', the regionprops function returns three commonly
used measurements, area, centroid, and bounding box, for all the objects in
the label matrix.. The bounding box represents the smallest rectangle that
can contain a component, or in this case, a grain of rice.

1-21
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graindata = regionprops(labeled, 'basic')

MATLAB responds with

graindata =

101x1 struct array with fields:
Area
Centroid
BoundingBox

To find the area of the 51st labeled component (grain of rice), access the
Area field in the 51st element in the graindata structure array. Note that
structure field names are case sensitive.

areab1 = graindata(51).Area

returns the following results

areab1 =

140
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Step 11: Compute Statistical Properties of Objects
in the Image

Now use MATLAB functions to calculate some statistical properties of the
thresholded objects. First use max to find the size of the largest grain. (In this
example, the largest grain is actually two grains of rice that are touching.)

maxArea = max([graindata.Area])

returns

maxArea =

404

Use the find command to return the component label of the grain of rice
with this area.

biggestGrain find([graindata.Area]==maxArea)

returns

biggestGrain

59

Find the mean of all the rice grain sizes.

meanArea = mean([graindata.Areal)

returns

meanArea =

175.0396
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Make a histogram containing 20 bins that show the distribution of rice grain
sizes. The histogram shows that the most common sizes for rice grains in this
image are in the range of 150 to 250 pixels.

hist([graindata.Area],20)

1= T T T T T T T T

a0 D 40 43
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Getting Help

In this section...

“Product Documentation” on page 1-25
“Image Processing Demos” on page 1-25
“MATLAB® Newsgroup” on page 1-26

Product Documentation

The Image Processing Toolbox™ documentation is available online in both
HTML and PDF formats. To access the HTML help, select Help from the
menu bar of the MATLAB® desktop. In the Help Navigator pane, click the
Contents tab and expand the Image Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the
Contents tab of the Help browser and go to the link under Printable (PDF)
Documentation on the Web. (Note that to view the PDF help, you must have
Adobe® Acrobat® Reader installed.)

For reference information about any of the Image Processing Toolbox
functions, see the online Chapter 17, “Functions — Alphabetical List”, which
complements the M-file help that is displayed in the MATLAB command
window when you type

help functionname

For example,

help imtool

Image Processing Demos

The Image Processing Toolbox software is supported by a full complement of
demo applications. These are very useful as templates for your own end-user
applications, or for seeing how to use and combine your toolbox functions for
powerful image analysis and enhancement.

To view all the demos, call the iptdemos function. This displays an HTML
page in the MATLAB Help browser that lists all the demos.

1-25
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You can also view this page by starting the MATLAB Help browser and
clicking the Demos tab in the Help Navigator pane. From the list of products
with demos, select Image Processing Toolbox.

The toolbox demos are located under the subdirectory

matlabroot\toolbox\images\imdemos

where matlabroot represents your MATLAB installation directory.

MATLAB® Newsgroup

If you read newsgroups on the Internet, you might be interested in the
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you
access to an active MATLAB user community. It is an excellent way to seek
advice and to share algorithms, sample code, and M-files with other MATLAB
users.
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Image Credits

This table lists the copyright owners of the images used in the Image
Processing Toolbox™ documentation.

Image Source

cameraman Copyright Massachusetts Institute of
Technology. Used with permission.

cell Cancer cell from a rat’s prostate, courtesy of
Alan W. Partin, M.D., Ph.D., Johns Hopkins
University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit,

courtesy of Steve Decker and Shujaat Nadeem,
MIT, 1993.

concordaerial and
westconcordaerial

Visible color aerial photographs courtesy of
mPower3/Emerge.

concordorthophoto and
westconcordorthophoto

Orthoregistered photographs courtesy
of Massachusetts Executive Office of
Environmental Affairs, MassGIS.

forest Photograph of Carmanah Ancient Forest,
British Columbia, Canada, courtesy of Susan
Cohen.

LAN files Permission to use Landsat data sets provided by
Space Imaging, LL.C, Denver, Colorado.

liftingbody Picture of M2-F1 lifting body in tow, courtesy of
NASA (Image number E-10962).

m83 MS83 spiral galaxy astronomical image courtesy
of Anglo-Australian Observatory, photography
by David Malin.

moon Copyright Michael Myers. Used with
permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog
#PIA01364.

solarspectra Courtesy of Ann Walker. Used with permission.
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Image Source

tissue Courtesy of Alan W. Partin, M.D., PhD., Johns
Hopkins University School of Medicine.

trees Trees with a View, watercolor and ink on paper,
copyright Susan Cohen. Used with permission.
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Introduction

This chapter introduces you to the fundamentals of image processing using
MATLAB® and the Image Processing Toolbox™ software.

Images in MATLAB® (p. 2-2)

Image Coordinate Systems (p. 2-3)

Image Types in the Toolbox (p. 2-7)

Converting Between Image Types
(p. 2-16)

Converting Between Image Classes
(p. 2-18)

Working with Image Sequences
(p. 2-20)

Image Arithmetic (p. 2-26)

How images are represented in
MATLAB and the Image Processing
Toolbox software

Ways of expressing locations in
images

Fundamental image types supported
by the Image Processing Toolbox
software

Converting between the image types

Converting image data from one
class to another

Working with sequences of images

Adding, subtracting, multiplying,
and dividing images
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Images in MATLAB®

The basic data structure in MATLAB® is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. (Pixel is derived from picture element and usually denotes a single
dot on a computer display.)

For example, an image composed of 200 rows and 300 columns of different
colored dots would be stored in MATLAB as a 200-by-300 matrix. Some
images, such as truecolor images, require a three-dimensional array, where
the first plane in the third dimension represents the red pixel intensities,

the second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities. This convention makes working with
images in MATLAB similar to working with any other type of matrix data, and
makes the full power of MATLAB available for image processing applications.
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Image Coordinate Systems

In this section...

“Pixel Coordinates” on page 2-3

“Spatial Coordinates” on page 2-4

“Using a Non-Default Spatial Coordinate System” on page 2-5

Pixel Coordinates

Generally, the most convenient method for expressing locations in an image is
to use pixel coordinates. In this coordinate system, the image is treated as

a grid of discrete elements, ordered from top to bottom and left to right, as
illustrated by the following figure.

1 2 3 c
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The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward,
while the second component ¢ (the column) increases to the right. Pixel
coordinates are integer values and range between 1 and the length of the
row or column.

There is a one-to-one correspondence between pixel coordinates and the
coordinates MATLAB® uses for matrix subscripting. This correspondence
makes the relationship between an image’s data matrix and the way the
image is displayed easy to understand. For example, the data for the pixel
in the fifth row, second column is stored in the matrix element (5,2). You use



2 Introduction

normal MATLAB matrix subscripting to access values of individual pixels.
For example, the MATLAB code

1(2,15)

returns the value of the pixel at row 2, column 15 of the image I.

Spatial Coordinates

In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely
identified by a single coordinate pair, such as (5,2). From this perspective, a
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from
(5,2). In this spatial coordinate system, locations in an image are positions
on a plane, and they are described in terms of x and y (not r and c as in
the pixel coordinate system).

The following figure illustrates the spatial coordinate system used for images.
Notice that y increases downward.
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The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate
system in many ways. For example, the spatial coordinates of the center point
of any pixel are identical to the pixel coordinates for that pixel.
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There are some important differences, however. In pixel coordinates, the
upper left corner of an image is (1,1), while in spatial coordinates, this location
by default is (0.5,0.5). This difference is due to the pixel coordinate system’s
being discrete, while the spatial coordinate system is continuous. Also, the
upper left corner is always (1,1) in pixel coordinates, but you can specify a
nondefault origin for the spatial coordinate system.

Another potentially confusing difference is largely a matter of convention: the
order of the horizontal and vertical components is reversed in the notation for
these two systems. As mentioned earlier, pixel coordinates are expressed as
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages,
when the syntax for a function uses r and c, it refers to the pixel coordinate
system. When the syntax uses x and vy, it refers to the spatial coordinate
system.

Using a Non-Default Spatial Coordinate System

By default, the spatial coordinates of an image correspond with the pixel
coordinates. For example, the center point of the pixel in row 5, column 3
has spatial coordinates x=3, y=5. (Remember, the order of the coordinates

is reversed.) This correspondence simplifies many of the toolbox functions
considerably. Several functions primarily work with spatial coordinates
rather than pixel coordinates, but as long as you are using the default spatial
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial
coordinate system. For example, you could specify that the upper left corner
of an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function
that returns coordinates for this image, the coordinates returned will be
values in this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData
and YData image properties when you display the image. These properties
are two-element vectors that control the range of coordinates spanned by the
image. By default, for an image A, XData is [1 size(A,2)], and YData is

[1 size(A,1)].

For example, if A is a 100 row by 200 column image, the default XData is
[1 200], and the default YData is [1 100]. The values in these vectors are
actually the coordinates for the center points of the first and last pixels (not
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the pixel edges), so the actual coordinate range spanned is slightly larger;
for instance, if XData is [1 200], the x-axis range spanned by the image is
[0.5 200.5].

These commands display an image using nondefault XData and YData.

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];

image (A, 'XData',x, 'YData',y), axis image, colormap(jet(25))

TS
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For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.
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Image Types in the Toolbox

In this section...

“Overview of Image Types” on page 2-7
“Binary Images” on page 2-8

“Indexed Images” on page 2-9
“Grayscale Images” on page 2-11

“Truecolor Images” on page 2-12

Overview of Image Types

The Image Processing Toolbox™ software defines four basic types of images,
summarized in the following table. These image types determine the way
MATLAB® interprets data matrix elements as pixel intensity values. For
information about converting between image types, see “Converting Between
Image Types” on page 2-16.

Image Type

Interpretation

Binary
(Also known as a
bilevel image)

Logical array containing only Os and 1s, interpreted
as black and white, respectively. See “Binary
Images” on page 2-8 for more information.

Indexed
(Also known as a
pseudocolor image)

Array of class logical, uint8, uint16, single, or

double whose pixel values are direct indices into a
colormap. The colormap is an m-by-3 array of class
double.

For single or double arrays, integer values range
from [1, p]. For logical, uint8, or uint16 arrays,
values range from [0, p-1]. See “Indexed Images” on
page 2-9 for more information.
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Image Type

Interpretation

Grayscale

(Also known as an
intensity, gray scale,
or gray level image)

Array of class uint8, uint16, int16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from
[0, 1]. For uint8, values range from [0,255]. For
uint16, values range from [0, 65535]. For int16,
values range from [-32768, 32767]. See “Grayscale
Images” on page 2-11 for more information.

Truecolor
(Also known as an
RGB image )

m-by-n-by-3 array of class uint8, uint16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from

[0, 1]. For uint8, values range from [0, 255]. For
uint16, values range from [0, 65535]. See “Truecolor
Images” on page 2-12 for more information.

Binary Images

In a binary image, each pixel assumes one of only two discrete values: 1
or 0. A binary image is stored as a logical array. By convention, this
documentation uses the variable name BW to refer to binary images.

The following figure shows a binary image with a close-up view of some of
the pixel values.
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Indexed Images

An indexed image consists of an array and a colormap matrix. The pixel
values in the array are direct indices into a colormap. By convention, this
documentation uses the variable name X to refer to the array and map to refer
to the colormap.

The colormap matrix is an m-by-3 array of class double containing
floating-point values in the range [0,1]. Each row of map specifies the red,
green, and blue components of a single color. An indexed image uses direct
mapping of pixel values to colormap values. The color of each image pixel is
determined by using the corresponding value of X as an index into map.
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A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. After you read the image
and the colormap into the MATLAB workspace as separate variables, you
must keep track of the association between the image and colormap. However,
you are not limited to using the default colormap—you can use any colormap
that you choose.

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class
single or double, it normally contains integer values 1 through p, where p is
the length of the colormap. the value 1 points to the first row in the colormap,
the value 2 points to the second row, and so on. If the image matrix is of class
logical, uint8 or uint16, the value 0 points to the first row in the colormap,
the value 1 points to the second row, and so on.

The following figure illustrates the structure of an indexed image. In the
figure, the image matrix is of class double, so the value 5 points to the fifth
row of the colormap.
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Grayscale Images

A grayscale image (also called gray-scale, gray scale, or gray-level) is a data
matrix whose values represent intensities within some range. MATLAB
stores a grayscale image as a individual matrix, with each element of the
matrix corresponding to one image pixel. By convention, this documentation
uses the variable name I to refer to grayscale images.

The matrix can be of class uint8, uint16, int16, single, or double.While
grayscale images are rarely saved with a colormap, MATLAB uses a colormap
to display them.

For a matrix of class single or double, using the default grayscale colormap,
the intensity 0 represents black and the intensity 1 represents white. For a
matrix of type uint8, uint16, or int16, the intensity intmin(class(I))
represents black and the intensity intmax (class(I)) represents white.

The figure below depicts a grayscale image of class double.

g 0.2563 0.2826
U.5342 0.2051 0.2157 0.2826 0.3822
0.5342 0.17858 0,1307 0.1789 0.2051
0.4308 0.2483 0.2624 0.3344 0.3344 0.2624 0.2543
d344 0.2624 0.3344 0,334 13—

0.2826

Pixel Values in a Grayscale Image Define Gray Levels
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Truecolor Images

A truecolor image is an image in which each pixel is specified by three values
— one each for the red, blue, and green components of the pixel’s color.
MATLAB store truecolor images as an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel. Truecolor
images do not use a colormap. The color of each pixel is determined by the
combination of the red, green, and blue intensities stored in each color plane
at the pixel’s location.

Graphics file formats store truecolor images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16
million colors. The precision with which a real-life image can be replicated
has led to the commonly used term truecolor image.

A truecolor array can be of class uint8, uint16, single, or double. In a
truecolor array of class single or double, each color component is a value
between 0 and 1. A pixel whose color components are (0,0,0) is displayed

as black, and a pixel whose color components are (1,1,1) is displayed as
white. The three color components for each pixel are stored along the third
dimension of the data array. For example, the red, green, and blue color
components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and
RGB(10,5,3), respectively.
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The following figure depicts a truecolor image of class double.
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The Color Planes of a Truecolor Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627
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To further illustrate the concept of the three separate color planes used in a
truecolor image, the code sample below creates a simple image containing
uninterrupted areas of red, green, and blue, and then creates one image for
each of its separate color planes (red, green, and blue). The example displays
each color plane image separately, and also displays the original image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);

R=RGB(:,:,1);
G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)

figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

Red Pla-s Cres- Flane

3um Plena Cricinal Imege

The Separated Color Planes of an RGB Image
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Notice that each separated color plane in the figure contains an area of white.
The white corresponds to the highest values (purest shades) of each separate
color. For example, in the Red Plane image, the white represents the highest
concentration of pure red values. As red becomes mixed with green or blue,
gray pixels appear. The black region in the image shows pixel values that
contain no red values, i.e., R ==
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Converting Between Image Types

The toolbox includes many functions that you can use to convert an image
from one type to another, listed in the following table. For example, if you
want to filter a color image that is stored as an indexed image, you must first
convert it to truecolor format. When you apply the filter to the truecolor image,
MATLABS® filters the intensity values in the image, as is appropriate. If you
attempt to filter the indexed image, MATLAB simply applies the filter to the
indices in the indexed image matrix, and the results might not be meaningful.

You can perform certain conversions just using MATLAB syntax. For example,
you can convert a grayscale image to truecolor format by concatenating three
copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting truecolor image has identical matrices for the red, green, and
blue planes, so the image displays as shades of gray.

In addition to these image type conversion functions, there are other functions
that return a different image type as part of the operation they perform. For
example, the region of interest functions return a binary image that you can
use to mask an image for filtering or for other operations.

Note When you convert an image from one format to another, the resulting
image might look different from the original. For example, if you convert a
color indexed image to a grayscale image, the resulting image displays as
shades of grays, not color.

Function Description

demosaic Convert Bayer pattern encoded image to truecolor (RGB)
image.

dither Use dithering to convert a grayscale image to a binary
image or to convert a truecolor image to an indexed image.

gray2ind Convert a grayscale image to an indexed image.
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Function Description

grayslice Convert a grayscale image to an indexed image by using
multilevel thresholding.

im2bw Convert a grayscale image, indexed image, or truecolor
image, to a binary image, based on a luminance threshold.

ind2gray Convert an indexed image to a grayscale image.

ind2rgb Convert an indexed image to a truecolor image.

mat2gray Convert a data matrix to a grayscale image, by scaling
the data.

rgb2gray Convert a truecolor image to a grayscale image.
Note: To work with images that use other color spaces,
such as HSV, first convert the image to RGB, process
the image, and then convert it back to the original color
space. For more information about color space conversion
routines, see Chapter 14, “Color”.

rgb2ind Convert a truecolor image to an indexed image.
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Converting Between Image Classes
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In this section...

“Overview of Image Class Conversions” on page 2-18

“Losing Information in Conversions” on page 2-18

“Converting Indexed Images” on page 2-18

Overview of Image Class Conversions

You can convert uint8 and uint16 image data to double using the MATLAB®
double function. However, converting between classes changes the way
MATLAB and the toolbox interpret the image data. If you want the resulting
array to be interpreted properly as image data, you need to rescale or offset
the data when you convert it.

For easier conversion of classes, use one of these functions: im2uints8,
im2uint16, im2int16, im2single, or im2double. These functions
automatically handle the rescaling and offsetting of the original data of any
image class. For example, this command converts a double-precision RGB
image with data in the range [0,1] to a uint8 RGB image with data in the
range [0,255].

RGB2 = im2uint8(RGB1);

Losing Information in Conversions

When you convert to a class that uses fewer bits to represent numbers, you
generally lose some of the information in your image. For example, a uint16
grayscale image is capable of storing up to 65,536 distinct shades of gray, but
a uint8 grayscale image can store only 256 distinct shades of gray. When
you convert a uint16 grayscale image to a uint8 grayscale image, im2uint8
quantizes the gray shades in the original image. In other words, all values
from 0 to 127 in the original image become 0 in the uint8 image, values from
128 to 385 all become 1, and so on.

Converting Indexed Images

It is not always possible to convert an indexed image from one storage class
to another. In an indexed image, the image matrix contains only indices into



Converting Between Image Classes

a colormap, rather than the color data itself, so no quantization of the color
data is possible during the conversion.

For example, a uint16 or double indexed image with 300 colors cannot be
converted to uint8, because uint8 arrays have only 256 distinct values. If
you want to perform this conversion, you must first reduce the number of the
colors in the image using the imapprox function. This function performs the
quantization on the colors in the colormap, to reduce the number of distinct
colors in the image. See “Reducing Colors Using imapprox” on page 14-10
for more information.
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In this section...

“Overview of Toolbox Functions That Work with Image Sequences” on page
2-20

“Example: Processing Image Sequences” on page 2-23

“Multi-Frame Image Arrays” on page 2-24

Overview of Toolbox Functions That Work with
Image Sequences

Some applications work with collections of images related by time, such as
frames in a movie, or by (spatial location, such as magnetic resonance imaging
(MRI) slices. These collections of images are referred to by a variety of names,
such as image sequences or image stacks.

The ability to create N-dimensional arrays can provide a convenient way to
store image sequences. For example, an m-by-n-by-p array can store an array
of p two-dimensional images, such as grayscale or binary images, as shown in
the following figure. An m-by-n-by-3-by-p array can store truecolor images
where each image is made up of three planes.

| - |moge p
Image Image 2

Imoge 1

Multidimensional Array Containing an Image Sequence

Many toolbox functions can operate on multi-dimensional arrays and,
consequently, can operate on image sequences. For example, if you pass a
multi-dimensional array to the imtransform function, it applies the same 2-D
transformation to all 2-D planes along the higher dimension.
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Some toolbox functions that accept multi-dimensional arrays, however, do
not by default interpret an m-by-n-by-p or an m-by-n-by-3-by-p array as an
image sequence. To use these functions with image sequences, you must use
particular syntax and be aware of other limitations. The following table lists
these toolbox functions and provides guidelines about how to use them to

process image sequences. For information about displaying image sequences,

see “Viewing Image Sequences” on page 4-56.

Image Sequence

Guideline When Used with an

Function Dimensions Image Sequence
bwlabeln m-by-n-by-p only Must use the bwlabeln(BW,conn)
syntax with a 2-D connectivity.

deconvblind m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.

deconvlucy m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.

edgetaper m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.

entropyfilt m-by-n-by-p only nhood argument must be 2-D.

imabsdiff m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.

imadd m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size. Cannot add scalar to image

sequence.

imbothat m-by-n-by-p only SE argument must be 2-D.

imclose m-by-n-by-p only SE argument must be 2-D.

imdilate m-by-n-by-p only SE argument must be 2-D.

imdivide m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.

imerode m-by-n-by-p only SE argument must be 2-D.

imextendedmax | m-by-n-by-p only Must use the

imextendedmax(I,h,conn)
syntax with a 2-D connectivity.
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Image Sequence

Guideline When Used with an

Function Dimensions Image Sequence
imextendedmin | m-by-n-by-p only Must use the
imextendedmin(I,h,conn)
syntax with a 2-D connectivity.
imfilter m-by-n-by-p or With grayscale images, h can be
m-by-n-by-3-by-p 2-D. With truecolor images (RGB),
h can be 2-D or 3-D.
imhmax m-by-n-by-p only Must use the imhmax(I,h,conn)
syntax with a 2-D connectivity.
imhmin m-by-n-by-p only Must use the imhmin(I,h,conn)
syntax with a 2-D connectivity.
imlincomb m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
immultiply m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imopen m-by-n-by-p only SE argument must be 2-D.
imregionalmax | m-by-n-by-p only Must use the
imextendedmax (I,conn) syntax
with a 2-D connectivity.
imregionalmin | m-by-n-by-p only Must use the
imextendedmin(I,conn) syntax
with a 2-D connectivity.
imtransform m-by-n-by-p or TFORM argument must be 2-D.
m-by-n-by-3-by-p
imsubtract m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imtophat m-by-n-by-p only SE argument must be 2-D.
padarray m-by-n-by-p or PADSIZE argument must be a
m-by-n-by-3-by-p two-element vector.
rangefilt m-by-n-by-p only NHOOD argument must be 2-D.
stdfilt m-by-n-by-p only NHOOD argument must be 2-D.
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Image Sequence | Guideline When Used with an

Function Dimensions Image Sequence
tformarray m-by-n-by-p or T must be 2-D to 2-D (compatible
m-by-n-by-3-by-p with imtransform).
R must be 2-D.

TDIMS_A and TDIMS_B must be 2-D,
ie., [2 1] or

[1 2]

TSIZE_B must be a two-element
array [D1 D2], where D1 and D2
are the first and second transform
dimensions of the output space.
TMAP_B must be [TSIZE_B 2]

F can be a scalar or a p-by-1
array for m-by-n-by-p arrays, or
it can be a scalar, 1-by-p array,
3-by-1 array, or 3-by-p array, for
m-by-n-by-3-by-p arrays.

watershed m-by-n-by-p only Must use watershed(I,conn)
syntax with a 2-D connectivity.

Example: Processing Image Sequences

This example starts by reading a series of images from a directory into the
MATLAB® workspace, storing the images in an m-by-n-by-p array. The
example then passes the entire array to the stdfilt function and performs
standard deviation filtering on each image in the sequence. Note that, to
use stdfilt with an image sequence, you must use the nhood argument,
specifying a 2-D neighborhood.

% Create an array of filenames that make up the image sequence
fileFolder = fullfile(matlabroot, 'toolbox','images', 'imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirQutput.name}';

numFrames = numel(fileNames);

I = imread(fileNames{1});

% Preallocate the array
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sequence = zeros([size(I) numFrames],class(I));
sequence(:,:,1) = I;

% Create image sequence array
for p = 2:numFrames

sequence(:,:,p) = imread(fileNames{p});
end

% Process sequence
sequenceNew = stdfilt(sequence,ones(3));

% View results

figure;

for k = 1:numFrames
imshow(sequence(:,:,k));
title(sprintf('Original Image # %d',k));
pause(1);
imshow(sequenceNew(:,:,k),[1);
title(sprintf('Processed Image # %d',k));
pause(1);

end

Multi-Frame Image Arrays

The toolbox includes two functions, immovie and montage, that work with a
specific type of multi-dimensional array called a multi-frame array. In this
array, images, called frames in this context, are concatenated along the fourth
dimension. Multi-frame arrays are either m-by-n-by-1-by-p, for grayscale,
binary, or indexed images, or m-by-n-by-3-by-p, for truecolor images, where

p is the number of frames.

For example, a multi-frame array containing five, 480-by-640 grayscale or
indexed images would be 480-by-640-by-1-by-5. An array with five 480-by-640
truecolor images would be 480-by-640-by-3-by-5.

Note To process a multi-frame array of grayscale images as an image
sequence, as described in “Working with Image Sequences” on page 2-20, you
can use the squeeze function to remove the singleton dimension.
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You can use the cat command to create a multi-frame array. For example, the
following stores a group of images (A1, A2, A3, A4, and A5) in a single array.

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you
have a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size
and have the same number of planes. In a multiframe indexed image, each
image must also use the same colormap.
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In this section...

“Overview of Image Arithmetic Functions” on page 2-26

“Image Arithmetic Saturation Rules” on page 2-27

“Nesting Calls to Image Arithmetic Functions” on page 2-27

Overview of Image Arithmetic Functions

Image arithmetic is the implementation of standard arithmetic operations,
such as addition, subtraction, multiplication, and division, on images. Image
arithmetic has many uses in image processing both as a preliminary step in
more complex operations and by itself. For example, image subtraction can
be used to detect differences between two or more images of the same scene
or object.

You can do image arithmetic using the MATLAB® arithmetic operators.
The Image Processing Toolbox™ software also includes a set of functions
that implement arithmetic operations for all numeric, nonsparse data
types. The toolbox arithmetic functions accept any numeric data type,
including uint8, uint16, and double, and return the result image in the
same format. The functions perform the operations in double precision, on
an element-by-element basis, but do not convert images to double-precision
values in the MATLAB workspace. Overflow is handled automatically. The
functions saturate return values to fit the data type. For more information,
see these additional topics:

Note On Intel® architecture processors, the image arithmetic functions can
take advantage of the Intel Performance Primitives Library (IPPL), thus
accelerating their execution time. IPPL is only activated, however, when the
data passed to these functions is of specific classes. See the reference pages
for the individual arithmetic functions for more information.




Image Arithmetic

Image Arithmetic Saturation Rules

The results of integer arithmetic can easily overflow the data type allotted
for storage. For example, the maximum value you can store in uint8 data is
255. Arithmetic operations can also result in fractional values, which cannot
be represented using integer arrays.

MATLAB arithmetic operators and the Image Processing Toolbox arithmetic
functions use these rules for integer arithmetic:

® Values that exceed the range of the integer type are saturated to that range.

® Fractional values are rounded.

For example, if the data type is uint8, results greater than 255 (including
Inf) are set to 255. The following table lists some additional examples.

Result Class Truncated Value
300 uint8 255

-45 uint8 0

10.5 uint8 11

Nesting Calls to Image Arithmetic Functions
You can use the image arithmetic functions in combination to perform a series
of operations. For example, to calculate the average of two images,

_ A+EB
2

C

You could enter

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended

When used with uint8 or uint16 data, each arithmetic function rounds

and saturates its result before passing it on to the next operation. This can
significantly reduce the precision of the calculation. A better way to perform
this calculation is to use the imlincomb function. imlincomb performs all the
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arithmetic operations in the linear combination in double precision and only
rounds and saturates the final result.

K = imlincomb(.5,I,.5,I2); % recommended
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Reading and Writing Image
Data

This chapter describes how to get information about the contents of a graphics
file, read image data from a file, and write image data to a file, using standard

graphics and medical file formats.

Getting Information About a
Graphics File (p. 3-2)

Reading Image Data (p. 3-3)

Writing Image Data to a File (p. 3-5)

Converting Between Graphics File
Formats (p. 3-8)

Reading and Writing Data in
Medical File Formats (p. 3-9)

Working with High Dynamic Range
Images (p. 3-18)

Describes how to get information
about the contents of a graphics file
by reading the metadata contained
in the file.

Describes how to read image data
from a graphics file in one of several
common graphics file formats.

Describes how to write image data
to a file in one of several common
graphics file formats.

Describes how to change the graphics
file format used to store an image.

Describes how to import image data
into the MATLAB® workspace and
write image data to graphics files

Describes how to read and display
high dynamic range images.
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Getting Information About a Graphics File

To obtain information about a graphics file and its contents, use the imfinfo
function. You can use imfinfo with any of the formats supported by
MATLAB®. Use the imformats function to determine which formats are
supported.

Note You can also get information about an image displayed in the Image Tool
— see “Getting Information About an Image Using the Image Information
Tool” on page 4-41.

The information returned by imfinfo depends on the file format, but it always
includes at least the following:

® Name of the file

¢ File format

® Version number of the file format

® File modification date

* File size in bytes

® Image width in pixels

® Image height in pixels

e Number of bits per pixel

* Image type: truecolor (RGB), grayscale (intensity), or indexed
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Reading Image Data

To import an image from any supported graphics image file format, in any
of the supported bit depths, use the imread function. This example reads a
truecolor image into the MATLAB® workspace as the variable RGB.

RGB = imread('football.jpg');

If the image file format uses 8-bit pixels, imread stores the data in the
workspace as a uint8 array. For file formats that support 16-bit data, such
as PNG and TIFF, imread creates a uint16 array.

imread uses two variables to store an indexed image in the workspace: one
for the image and another for its associated colormap. imread always reads
the colormap into a matrix of class double, even though the image array
itself may be of class uint8 or uint16.

[X,map] = imread('trees.tif');

In these examples, imread infers the file format to use from the contents of
the file. You can also specify the file format as an argument to imread. imread
supports many common graphics file formats, such as Microsoft® Windows®
Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic
Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged Image
File Format (TIFF) formats. For the latest information concerning the bit
depths and/or image formats supported, see imread and imformats.

If the graphics file contains multiple images, imread imports only the first
image from the file. To import additional images, you must use imread with
format-specific arguments to specify the image you want to import. In this
example, imread imports a series of 27 images from a TIFF file and stores the
images in a four-dimensional array. You can use imfinfo to determine how
many images are stored in the file.

mri = zeros([128 128 1 27],'uint8'); % preallocate 4-D array

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end
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When a file contains multiple images that are related in some way, you
can call image processing algorithms directly. . For more information, see
“Working with Image Sequences” on page 2-20.
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Writing Image Data to a File

In this section...

“Overview” on page 3-5
“Specifying Format-Specific Parameters” on page 3-6

“Reading and Writing Binary Images in 1-Bit Format” on page 3-6

“Determining the Storage Class of the Output File” on page 3-7

Overview

To export image data from the MATLAB® workspace to a graphics file in
one of the supported graphics file formats, use the imwrite function. When
using imwrite, you specify the MATLAB variable name and the name of the
file. If you include an extension in the filename, imwrite attempts to infer
the desired file format from it. For example, the file extension . jpg infers the
Joint Photographic Experts Group (JPEG) format. You can also specify the
format explicitly as an argument to imwrite.

This example loads the indexed image X from a MAT-file, clown.mat, along
with the associated colormap map, and then exports the image as a bitmap

(BMP) file.
load clown
whos
Name Size Bytes Class
X 200x320 512000 double array
caption 2x1 4 char array
map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes

imwrite (X,map, 'clown.bmp')
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Specifying Format-Specific Parameters

When using imwrite with some graphics formats, you can specify additional
format-specific parameters. For example, with PNG files, you can specify the
bit depth. This example writes a grayscale image I to a 4-bit PNG file.

imwrite(I, 'clown.png', 'BitDepth',4);

This example writes an image A to a JPEG file, using an additional parameter
to specify the compression quality parameter.

imwrite (A, 'myfile.jpg', 'Quality', 100);

For more information about these additional format-specific syntaxes, see
the imwrite reference page.

Reading and Writing Binary Images in 1-Bit Format

In certain file formats, such as TIFF, a binary image can be stored in a 1-bit
format. When you read in a binary image in 1-bit format, imread stores the
data in the workspace as a logical array. If the file format supports it,
imwrite writes binary images as 1-bit images by default. This example reads
in a binary image and writes it as a TIFF file.

BW = imread('text.png');
imwrite (BW, 'test.tif');

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.
info = imfinfo('test.tif');

info.BitDepth
ans =

Note When writing binary files, MATLAB sets the ColorType field to
‘grayscale’.
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Determining the Storage Class of the Output File

imwrite uses the following rules to determine the storage class used in the

output image.

Storage Class
of Image

Storage Class of Output Image File

logical

If the output image file format supports 1-bit images,
imwrite creates a 1-bit image file.

If the output image file format specified does not
support 1-bit images, imwrite exports the image data
as a uint8 grayscale image.

uint8

If the output image file format supports unsigned 8-bit
images, imwrite creates an unsigned 8-bit image file.

uinti6

If the output image file format supports unsigned 16-bit
images (PNG or TIFF), imwrite creates an unsigned
16-bit image file.

If the output image file format does not support 16-bit
images, imwrite scales the image data to class uint8
and creates an 8-bit image file.

int16

Partially supported; depends on file format.

single

Partially supported; depends on file format.

double

MATLAB scales the image data to uint8 and creates an
8-bit image file, because most image file formats use
8 bits.
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Converting Between Graphics File Formats

To change the graphics format of an image, use imread to import the image
into the MATLAB® workspace and then use the imwrite function to export
the image, specifying the appropriate file format.

To illustrate, this example uses the imread function to read an image in TIFF
format into the workspace and write the image data as JPEG format.

moon_tiff = imread('moon.tif');
imwrite (moon_tiff, 'moon.jpg');

For the specifics of which bit depths are supported for the different graphics
formats, and for how to specify the format type when writing an image to file,
see the reference pages for imread and imwrite.
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Reading and Writing Data in Medical File Formats

In this section...

“Reading Metadata from a DICOM File” on page 3-9

“Reading Image Data from a DICOM File” on page 3-10

“Writing Image Data or Metadata to a DICOM File” on page 3-11

“Using the Mayo Analyze 7.5 Format” on page 3-16

“Using the Interfile Format” on page 3-17

Reading Metadata from a DICOM File

DICOM files contain metadata that provide information about the image
data, such as the size, dimensions, bit depth, modality used to create the data,
the equipment settings used to capture the image, and information about the
study. The DICOM specification defines many of these metadata fields, but
files can contain additional fields, called private metadata.

To read metadata from a DICOM file, use the dicominfo function. dicominfo
returns the information in a MATLAB® structure where every field contains
a specific piece of DICOM metadata. You can use the metadata structure
returned by dicominfo to specify the DICOM file you want to read using
dicomread — see “Reading Image Data from a DICOM File” on page 3-10.
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The following example reads the metadata from a sample DICOM file that

is included with the toolbox.

info = dicominfo('CT-MONO2-16-ankle.dcm')
info =
Filename: [1x47 char]
FileModDate: '24-Dec-2000 19:54:47'
FileSize: 525436
Format: 'DICOM'
FormatVersion: 3
Width: 512
Height: 512
BitDepth: 16
ColorType: 'grayscale'
SelectedFrames: []
FileStruct: [1x1 struct]
StartOfPixelData: 1140
MetaElementGroupLength: 192
FileMetaInformationVersion: [2x1 double]
MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
MediaStorageSOPInstanceUID: [1x50 char]

TransferSyntaxUID:
ImplementationClassUID:

'1.2.840.10008.1.2"
'1.2.840.113619.6.5"

Reading Image Data from a DICOM File

To read image data from a DICOM file, use the dicomread function. The
dicomread function reads files that comply with the DICOM specification but
can also read certain common noncomplying files.

When using dicomread, you can specify the filename as an argument, as
in the following example. The example reads the sample DICOM file that

is included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');
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You can also use the metadata structure returned by dicominfo to specify the
file you want to read, as in the following example.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

Viewing Images from DICOM Files

To view the image data imported from a DICOM file, use one of the toolbox
image display functions imshow or imtool. Note, however, that because
the image data in this DICOM file is signed 16-bit data, you must use the
autoscaling syntax with either display function to make the image viewable.

imshow(I, 'DisplayRange’',[])

Writing Image Data or Metadata to a DICOM File

To write image data or metadata to a file in DICOM format, use the
dicomwrite function. This example writes the image I to the DICOM file
ankle.dcm.

dicomwrite(I, 'ankle.dcm')
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Writing Metadata with the Image Data
When writing image data to a DICOM file, dicomwrite automatically
includes the minimum set of metadata fields required by the type of DICOM

information object (IOD) you are creating. dicomwrite supports the following
DICOM IODs with full validation.

¢ Secondary capture (default)
® Magnetic resonance

¢ Computed tomography

dicomwrite can write many other types of DICOM data (e.g. X-ray,
radiotherapy, nuclear medicine) to a file; however, dicomwrite does not
perform any validation of this data. See dicomwrite for more information.

You can also specify the metadata you want to write to the file by passing to
dicomwrite an existing DICOM metadata structure that you retrieved using
dicominfo. In the following example, the dicomwrite function writes the
relevant information in the metadata structure info to the new DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I,'ankle.dcm',info)

Note that the metadata written to the file is not identical to the metadata in
the info structure. When writing metadata to a file, there are certain fields
that dicomwrite must update. To illustrate, look at the instance ID in the
original metadata with the ID in the new file.

info.SOPInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.1.736169244
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Now, read the metadata from the newly created DICOM file, using dicominfo,
and check the SOPInstanceUID field. Note that they contain different values.

info2 = dicominfo('ankle.dcm');
info2.SOPInstanceUID
ans =

1.2.841.113411.2.1.2411.10311244477.365.1.63874544

Removing Confidential Information from a DICOM File

When using a DICOM file as part of a training set, blinded study, or a
presentation, you might want to remove confidential patient information, a
process called anonymizing the file. To do this, use the dicomanon function.

The dicomanon function creates a new series with new study values, changes
some of the metadata, and then writes the file. For example, you could replace
steps 4, 5, and 6 in the example in “Example: Creating a New DICOM Series”
on page 3-13 with a call to the dicomanon function.

Example: Creating a New DICOM Series

When writing a modified image to a DICOM file, you might want to make the
modified image the start of a new series. In the DICOM standard, images
can be organized into series. When you write an image with metadata to a
DICOM file, dicomwrite puts the image in the same series by default. To
create a new series, you must assign a new DICOM unique identifier to the
SeriesInstanceUID metadata field. The following example illustrates this
process.

1 Read an image from a DICOM file into the MATLAB workspace.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image, use either of the toolbox display functions imshow or
imtool. Because the DICOM image data is signed 16-bit data, you must
use the autoscaling syntax.

imtool(I, 'DisplayRange’',[])
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2 Read the metadata from the same DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify the series an image belongs to, view the value of the
SeriesInstanceUID field.

info.SeriesInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.736169244

3 You typically only start a new DICOM series when you modify the image in
some way. This example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in
the image. The pixels that form the white text characters are set to the
maximum pixel value.

max(I(:))
ans =

4080

3-14



Reading and Writing Data in Medical File Formats

min(I(:))
ans =
32

To remove these text characters, the example sets all pixels with the
maximum value to the minimum value.

Imodified = I;
Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified,[])

4 Generate a new DICOM unique identifier (UID) using the dicomuid
function. You need a new UID to write the modified image as a new series.

uid dicomuid

uid
1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497

dicomuid is guaranteed to generate a unique UID.
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5 Set the value of the SeriesInstanceUID field in the metadata associated
with the original DICOM file to the generated value.

info.SeriesInstanceUID = uid;

6 Write the modified image to a new DICOM file, specifying the modified
metadata structure, info, as an argument. Because you set the
SeriesInstanceUID value, the image you write is part of a new series.

dicomwrite(Imodified, 'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID
metadata field in the new file.

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

Using the Mayo Analyze 7.5 Format

Analyze 7.5 is a file format, developed by the Mayo Clinic, for storing MRI
data. An Analyze 7.5 data set consists of two files:

e Header file (filename.hdr) — Provides information about dimensions,
identification, and processing history. You use the analyze75info function
to read the header information.

® Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use analyze75read to read the image
data into the MATLAB workspace.

Note The Analyze 7.5 format uses the same dual-file data set organization
and the same filename extensions as the Interfile format; however, the file
formats are not interchangeable. To learn how to read data from an Interfile
data set, see “Using the Interfile Format” on page 3-17.

The following example calls the analyze75info function to read the metadata
from the Analyze 7.5 header file. The example then passes the info structure
returned by analyze75info to the analyze75read function to read the image
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data from the image file. The file used in the example can be downloaded from
http://www.radiology.uiowa.edu/downloads/.

info = analyze75info('CT_HAND.hdr');
X = analyze75read(info);

Using the Interfile Format

Interfile is a file format that was developed for the exchange of nuclear
medicine image data.

An Interfile data set consists of two files:

e Header file (filename.hdr) — Provides information about dimensions,
identification and processing history. You use the interfileinfo function
to read the header information.

® Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use interfileread to read the image
data into the MATLAB workspace.

Note The Interfile format uses the same dual-file data set organization and
the same filename extensions as the Analyze 7.5 format; however, the file
formats are not interchangeable. To learn how to read data from an Analyze
7.5 data set, see “Using the Mayo Analyze 7.5 Format” on page 3-16.

The following example calls the interfileinfo function to read the metadata
from an Interfile header file. The example then reads the image data from the
corresponding image file in the Interfile data set. The file used in the example
can be downloaded from the Interfile Archive maintained by the Department
of Medical Physics and Bioengineering, University College, London, UK.

info = interfileinfo('dyna');
X = interfileread('dyna');
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Working with High Dynamic Range Images

In this section...

“Overview” on page 3-18

“Reading a High Dynamic Range Image” on page 3-18
“Creating a High Dynamic Range Image” on page 3-19
“Viewing a High Dynamic Range Image” on page 3-19

“Writing a High Dynamic Range Image to a File” on page 3-21

Overview

Dynamic range refers to the range of brightness levels, from dark to light.
The dynamic range of real-world scenes can be quite high. High Dynamic
Range (HDR) images attempt to capture the whole tonal range of real-world
scenes (called scene-referred), using 32-bit floating-point values to store each
color channel. HDR images contain a high level of detail, close to the range
of human vision. The toolbox includes functions for reading, creating, and
writing HDR images, and a tone-map operator for displaying HDR images on
a computer monitor.

Reading a High Dynamic Range Image

To read a high dynamic range image into the MATLAB® workspace, use the
hdrread function.

hdr_image = hdrread('office.hdr');

The output image hdr_image is an m-by-n-by-3 image of type single.

whos
Name Size Bytes Class Attributes
hdr_image  665x1000x3 7980000 single

Note, however, that before you can display a high dynamic range image,
you must convert it to a dynamic range appropriate to a computer display,
a process called tone mapping. Tone mapping algorithms scale the dynamic
range down while attempting to preserve the appearance of the original
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image. For more information, see “Viewing a High Dynamic Range Image”
on page 3-19.

Creating a High Dynamic Range Image

To create a high dynamic range image from a group of low dynamic range
images, use the makehdr function. Note that the low dynamic range images
must be spatially registered and the image files must contain EXITF metadata.
Specify the low-dynamic range images in a cell array.

hdr_image = makehdr(files);
Viewing a High Dynamic Range Image

If you try to view a HDR image using imshow, the image does not display
correctly.
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To view an HDR image, you must first convert the data to a dynamic range
that can be displayed correctly on a computer. Use the tonemap function to
perform this conversion. tonemap converts the high dynamic range image
into an RGB image of class uint8.

rgb = tonemap(hdr_image);

whos
Name Size Bytes Class Attributes
hdr_image  665x1000x3 7980000 single
rgb 665x1000x3 1995000 wuint8
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After converting the HDR image, try to display the image again.

imshow(rgb);

File Edit View Insert Tools Deskiop Window Help
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Writing a High Dynamic Range Image to a File

To write a high dynamic range image from the MATLAB workspace into a file,
use the hdrwrite function.

hdrwrite(hdr,'filename');
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Displaying and Exploring
Images

This section describes the image display and exploration tools provided by the

Image Processing Toolbox™ software.

Overview (p. 4-3)

Displaying Images Using the imshow
Function (p. 4-5)

Using the Image Tool to Explore
Images (p. 4-12)

Exploring Images Using Image Tool
Navigation Aids (p. 4-23)

Getting Information about the Pixels
in an Image (p. 4-29)

Measuring the Distance Between
Two Pixels (p. 4-38)

Getting Information About an Image
Using the Image Information Tool
(p. 4-41)

Adjusting Image Contrast Using the
Adjust Contrast Tool (p. 4-43)

Cropping an Image Using the Crop
Image Tool (p. 4-53)

Comparison of toolbox display
functions

How to use the imshow display
function

How to use the Image Tool integrated
display and exploration environment

Image Tool navigation aids including
the Overview tool, panning, and
zooming

Image Tool’s pixel information tools,
including the Pixel Region tool and
the Pixel Information tool

Image Tool’s Distance tool

Image Tool’s Image Information tool

Using the Image Tool’s Adjust
Contrast tool

Image Tool’s Crop Image tool
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Viewing Image Sequences (p. 4-56)

Displaying Different Image Types
(p. 4-68)

Adding a Colorbar to a Displayed
Image (p. 4-75)

Printing Images (p. 4-77)

Setting Toolbox Display Preferences
(p. 4-79)

Using implay and montage to view
image sequences

Using imshow and imtool with each
image type

Add a colorbar to an image displayed
with imshow

Print images from imshow and the
Image Tool

Setting toolbox preferences



Overview

Overview

The Image Processing Toolbox™ software includes two display functions,
imshow and imtool. Both functions work within the Handle Graphics®
architecture: they create an image object and display it in an axes object
contained in a figure object.

imshow is the toolbox’s fundamental image display function. Use imshow when
you want to display any of the different image types supported by the toolbox,
such as grayscale (intensity), truecolor (RGB), binary, and indexed. For more
information, see “Displaying Images Using the imshow Function” on page 4-5.
The imshow function is also a key building block for image applications you
might want to create using the toolbox modular tools. For more information,
see Chapter 5, “Building GUIs with Modular Tools”.

The other toolbox display function, imtool, launches the Image Tool, which
presents an integrated environment for displaying images and performing
some common image processing tasks. The Image Tool provides all the image
display capabilities of imshow but also provides access to several other tools
for navigating and exploring images, such as scroll bars, the Pixel Region
tool, the Image Information tool, and the Adjust Contrast tool. For more
information, see “Using the Image Tool to Explore Images” on page 4-12.

In general, using the toolbox functions to display images is preferable to using
MATLAB® image display functions image and imagesc because the toolbox
functions set certainHandle Graphics properties automatically to optimize the
image display. The following table lists these properties and their settings for
each image type. In the table, X represents an indexed image, I represents a
grayscale image, BW represents a binary image, and RGB represents a truecolor
image.

Note Both imshow and imtool can perform automatic scaling of image

data. When called with the syntax imshow(I, 'DisplayRange',[]), and
similarly for imtool, the functions set the axes CLim property to [min(I(:))
max(I(:))]. CDataMapping is always scaled for grayscale images, so that
the value min(I(:)) is displayed using the first colormap color, and the value
max(I(:)) is displayed using the last colormap color.
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Handle
Graphics
Property

Indexed
Images

Grayscale
Images

Binary Images

Truecolor
Images

CData (Image)

Set to the data in
X

Set to the data in
I

Set to data in BW

Set to data in RGB

CDataMapping Set to 'direct’ Set to 'scaled’ Set to 'direct’ Ignored when
(Image) CData is 3-D
CLim (Axes) Does not apply double: [0 1] |Setto [0 1] Ignored when
uint8: [0 255] CData is 3-D
uintié: [0
65535]
Colormap Set to data in map | Set to grayscale | Set to a grayscale | Ignored when
(Figure) colormap colormap whose | CData is 3-D

values range
from black to
white
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Displaying Images Using the imshow Function

In this section...

“Overview ” on page 4-5

“Specifying the Initial Image Magnification” on page 4-7
“Controlling the Appearance of the Figure” on page 4-7
“Displaying Each Image in a Separate Figure” on page 4-8

“Displaying Multiple Images in the Same Figure” on page 4-9

Overview

To display image data, use the imshow function. The following example reads
an image into the MATLAB® workspace and then displays the image in
a MATLAB figure window.

moon = imread('moon.tif');
imshow(moon) ;

The imshow function displays the image in a MATLAB figure window, as
shown in the following figure.
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Image Displayed in a Figure Window by imshow

You can also pass imshow the name of a file containing an image.

imshow( 'moon.tif');

This syntax can be useful for scanning through images. Note, however,
that when you use this syntax, imread does not store the image data in the
MATLAB workspace. If you want to bring the image into the workspace, you
must use the getimage function, which retrieves the image data from the
current Handle Graphics® image object. This example assigns the image
data from moon.tif to the variable moon, if the figure window in which it is
displayed is currently active.

moon = getimage;

For more information about using imshow to display the various image types
supported by the toolbox, see “Displaying Different Image Types” on page 4-68.
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Specifying the Initial Image Magnification

By default, imshow attempts to display an image in its entirety at 100%
magnification (one screen pixel for each image pixel). However, if an image
is too large to fit in a figure window on the screen at 100% magnification,
imshow scales the image to fit onto the screen and issues a warning message.

To override the default initial magnification behavior for a particular call to
imshow, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imshow(pout, 'InitialMagnification', 150)

imshow attempts to honor the magnification you specify. However, if the
image does not fit on the screen at the specified magnification, imshow scales
the image to fit and issues a warning message. You can also specify the text
string 'fit' as the initial magnification value. In this case, imshow scales the
image to fit the current size of the figure window.

You can also change the default initial magnification behavior of imshow
by setting the ImshowInitialMagnification toolbox preference. To make
this preference persist between sessions, include the command to set the
preference in your startup.m file. To learn more about toolbox preferences,
see “Setting the Values of Toolbox Preferences” on page 4-80.

When imshow scales an image, it uses interpolation to determine the values for
screen pixels that do not directly correspond to elements in the image matrix.
For more information, see “Specifying the Interpolation Method” on page 6-3.

Controlling the Appearance of the Figure

By default, when imshow displays an image in a figure, it surrounds the image
with a gray border. You can change this default and suppress the border using
the 'border' parameter, as shown in the following example.

imshow( 'moon.tif', 'Border','tight"')
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The following figure shows the same image displayed with and without a
border.
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Image Displayed With and Without a Border

The 'border' parameters affects only the image being displayed in the call to
imshow. If you want all the images that you display using imshow to appear
without the gray border, set the Image Processing Toolbox™ ' ImshowBorder'
preference to 'tight'. When you set a preference, it affects only the current
MATLAB session. You can also use preferences to include a visible axes in
the figure. For more information about preferences, see “Setting Toolbox
Display Preferences” on page 4-79.

Displaying Each Image in a Separate Figure

The simplest way to display multiple images is to display them in separate
figure windows. MATLAB does not place any restrictions on the number of
images you can display simultaneously.
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imshow always displays an image in the current figure. If you display two
images in succession, the second image replaces the first image. To view
multiple figures with imshow, use the figure command to explicitly create a
new empty figure before calling imshow for the next image. For example, to
view the first three frames in an array of grayscale images I,

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

Displaying Multiple Images in the Same Figure

You can use the imshow function with the MATLAB subplot function or the
MATLAB subimage function to display multiple images in a single figure
window. For additional options, see “Viewing Image Sequences” on page 4-56.

Note imtool does not support this capability.

Dividing a Figure Window into Multiple Display Regions
subplot divides a figure into multiple display regions. The syntax of subplot
is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and
makes the pth display region active.

Note When you use subplot to display multiple color images in one figure
window, the images must share the colormap of the last image displayed. In
some cases, as illustrated by the following example, the display results can be
unacceptable. As an alternative, you can use the subimage function, described
in , or you can map all images to the same colormap as you load them.
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For example, you can use this syntax to display two images side by side.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');

subplot(1,2,1), imshow(X1,map1)
subplot(1,2,2), imshow(X2,map2)

In the figure, note how the first image displayed, X1, appears dark after the
second image is displayed.
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Using the subimage Function to Display Multiple Images
subimage converts images to truecolor before displaying them and therefore
circumvents the colormap sharing problem. This example uses subimage to
display the forest and the trees images with better results.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)
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Using the Image Tool to Explore Images

In this section...

“Image Tool Overview” on page 4-12

“Opening the Image Tool” on page 4-15

“Specifying the Initial Image Magnification” on page 4-16
“Specifying the Colormap” on page 4-17

“Importing Image Data from the Workspace” on page 4-19
“Exporting Image Data to the Workspace” on page 4-20

“Saving the Image Data Displayed in the Image Tool” on page 4-20
“Closing the Image Tool” on page 4-22

“Printing the Image in the Image Tool” on page 4-22

Image Tool Overview

The Image Tool is an image display and exploration tool that presents an
integrated environment for displaying images and performing common image
processing tasks. The Image Tool provides access to several other tools:

Pixel Information tool — for getting information about the pixel under
the pointer

Pixel Region tool — for getting information about a group of pixels
Distance tool — for measuring the distance between two pixels

Image Information tool — for getting information about image and image
file metadata

Adjust Contrast tool and associated Window/Level tool — for adjusting the
contrast of the image displayed in the Image Tool and modifying the actual
image data. You can save the adjusted data to the workspace or a file.

Crop Image tool — for defining a crop region on the image and cropping the
image. You can save the cropped image to the workspace or a file.

Display Range tool — for determining the display range of the image data
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In addition, the Image Tool provides several navigation aids that can help
explore large images:

® Overview tool — for determining what part of the image is currently visible
in the Image Tool and changing this view.

¢ Pan tool — for moving the image to view other parts of the image

® Zoom tool — for getting a closer view of any part of the image.

® Scroll bars — for navigating over the image.

The following figure shows the image displayed in the Image Tool with many
of the related tools open and active.
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Opening the Image Tool

To start the Image Tool, use the imtool function. You can also start another
Image Tool from within an existing Image Tool by using the New option
from the File menu.

The imtool function supports many syntax options. For example, when called
without any arguments, it opens an empty Image Tool.

imtool

To bring image data into this empty Image Tool, you can use either the Open
or Import from Workspace options from the File menu — see “Importing
Image Data from the Workspace” on page 4-19.

You can also specify the name of the MATLAB® workspace variable that
contains image data when you call imtool, as follows:

moon = imread('moon.tif');
imtool(moon)

Alternatively, you can specify the name of the graphics file containing the
image. This syntax can be useful for scanning through graphics files.

imtool('moon.tif');

Note When you use this syntax, the image data is not stored in a MATLAB
workspace variable. To bring the image displayed in the Image Tool into
the workspace, you must use the getimage function or the Export from
Workspace option from the Image Tool File menu — see “Exporting Image
Data to the Workspace” on page 4-20.
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Specifying the Initial Image Magnification

The imtool function attempts to display an image in its entirety at 100%
magnification (one screen pixel for each image pixel) and always honors any
magnification value you specify. If the image is too big to fit in a figure on the
screen, the Image Tool shows only a portion of the image, adding scroll bars to
allow navigation to parts of the image that are not currently visible. If the
specified magnification would make the image too large to fit on the screen,
imtool scales the image to fit, without issuing a warning. This is the default
behavior, specified by the imtool 'InitialMagnification' parameter value
‘adaptive’.

To override this default initial magnification behavior for a particular call to
imtool, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imtool(pout, 'InitialMagnification', 150)

You can also specify the text string 'fit' as the initial magnification value.
In this case, imtool scales the image to fit the default size of a figure window.

You can also change the default initial magnification behavior of imtool

by setting the ImtoolInitialMagnification toolbox preference. The
magnification value you specify affects every call to imtool for the current
MATLAB session. To make this preference persist between sessions, include
the command to set the preference in your startup.m file. To learn more
about toolbox preferences, see “Setting the Values of Toolbox Preferences”
on page 4-80.

When imtool scales an image, it uses interpolation to determine the values
for screen pixels that do not directly correspond to elements in the image
matrix. For more information, see .
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Specifying the Colormap

A colormap is a matrix that can have any number of rows, but must have three
columns. Each row in the colormap is interpreted as a color, with the first
element specifying the intensity of red, the second green, and the third blue.

To specify the color map used to display an indexed image or a grayscale
image in the Image Tool, select the Choose Colormap option on the Tools
menu. This activates the Choose Colormap tool, shown below. Using this tool
you can select one of the MATLAB colormaps or select a colormap variable
from the MATLAB workspace.

When you select a colormap, the Image Tool executes the colormap function
you specify and updates the image displayed. You can edit the colormap
command in the Evaluate Colormap text box; for example, you can change
the number of entries in the colormap (default is 256). You can enter your own
colormap function in this field. Press Enter to execute the command.

When you choose a colormap, the image updates to use the new map. If you

click OK, the Image Tool applies the colormap and closes the Choose Colormap
tool. If you click Cancel, the image reverts to the previous colormap.
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Importing Image Data from the Workspace

To import image data from the MATLAB workspace into the Image Tool, use
the Import from Workspace option on the Image Tool File menu. In the
dialog box, shown below, you select the workspace variable that you want to

import into the workspace.

The following figure shows the Import from Workspace dialog box. You can
use the Filter menu to limit the images included in the list to certain image
types, i.e., binary, indexed, intensity (grayscale), or truecolor.
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Exporting Image Data to the Workspace

To export the image displayed in the Image Tool to the MATLAB workspace,
you can use the Export to Workspace option on the Image Tool File menu.
In the dialog box, shown below, you specify the name you want to assign to the
variable in the workspace. By default, the Image Tool prefills the variable
name field with BW, for binary images, RGB, for truecolor images, and I for
grayscale or indexed images.

If the Image Tool contains an indexed image, this dialog box also contain a
field where you can specify the name of the associated colormap.

Spedfy nume of —

the 'ui'[]l’|-ES|JIJI:B Image variahle name:

vorighle, ———RGE
oo |

Image Tool Export Image to Workspace Dialog Box

Using the getimage Function to Export Image Data

You can also use the getimage function to bring image data from the Image
Tool into the MATLAB workspace.

The getimage function retrieves the image data (CData) from the current
Handle Graphics® image object. Because, by default, the Image Tool does not
make handles to objects visible, you must use the toolbox function imgca to
get a handle to the image axes displayed in the Image Tool. The following
example assigns the image data from moon.tif to the variable moon if the
figure window in which it is displayed is currently active.

moon = getimage(imgca);

Saving the Image Data Displayed in the Image Tool

To save the image data displayed in the Image Tool, select the Save as option
from the Image Tool File menu. The Image Tool opens the Save Image dialog
box, shown in the following figure. Use this dialog box to navigate your file
system to determine where to save the image file and specify the name of
the file. Choose the graphics file format you want to use from among many
common image file formats listed in the Files of Type menu. If you do not
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specify a file name extension, the Image Tool adds an extension to the file
associated with the file format selected, such as . jpg for the JPEG format.

Xl

Save in: I@ Dieskkop

= 2 eEa

File: narne:

Files of type:

B My Docurments

i My Computer

\-'d My Metwork Places
52 all Public Folders

Save

Joint: Photographic Ex

etts Group (IPES) Cancel

0

Select image file format. —»

Joint Photographic Ex|
Partable Bitrmap (PEM)
Portable Graymap (PGM)
Paortable Metwark Graphics (PHG)
Portable Pixmap (PPM)

Sun Raster (RAS)

roup (JPEG)

Tagged Image File Format (TIFF)

Image Tool Save Image Dialog Box

4-21



4 Displaying and Exploring Images

4-22

Closing the Image Tool

To close the Image Tool window, use the Close button in the window title bar
or select the Close option from the Image Tool File menu. You can also use
the imtool function to return a handle to the Image Tool and use the handle
to close the Image Tool. When you close the Image Tool, any related tools that
are currently open also close.

Because the Image Tool does not make the handles to its figure objects
visible, the Image Tool does not close when you call the MATLAB close all
command. If you want to close multiple Image Tools, use the syntax

imtool close all

or select Close all from the Image Tool File menu.

Printing the Image in the Image Tool

To print the image displayed in the Image Tool, select the Print to Figure
option from the File menu. The Image Tool opens another figure window and
displays the image. Use the Print option on the File menu of this figure
window to print the image. See “Printing Images” on page 4-77 for more
information.
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Exploring Images Using Image Tool Navigation Aids

In this section...

“Navigating an Image Using the Overview Tool” on page 4-23
“Panning the Image Displayed in the Image Tool” on page 4-26
“Zooming In and Out on an Image in the Image Tool” on page 4-27

“Specifying the Magnification of the Image” on page 4-27

Navigating an Image Using the Overview Tool

If an image is large or viewed at a large magnification, the Image Tool displays
only a portion of the entire image, including scroll bars to allow navigation
around the image. To determine which part of the image is currently visible
in the Image Tool, use the Overview tool. The Overview tool displays the
entire image, scaled to fit. Superimposed over this view of the image is a
rectangle, called the detail rectangle. The detail rectangle shows which part of
the image is currently visible in the Image Tool. You can change the portion of
the image visible in the Image Tool by moving the detail rectangle over the
image in the Overview tool.
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The following sections provide more information about using the Overview
tool.

“Starting the Overview Tool” on page 4-24

® “Moving the Detail Rectangle to Change the Image View” on page 4-25
* “Specifying the Color of the Detail Rectangle” on page 4-25

® “Getting the Position and Size of the Detail Rectangle” on page 4-25

* “Printing the View of the Image in the Overview Tool” on page 4-26

Starting the Overview Tool

The Overview tool starts automatically when you start the Image Tool. For
example, execute the following command.
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imtool('moon.tif")

You can also start the Overview tool by clicking the Overview button j in
the Image Tool toolbar or by selecting the Overview option from the Tools
menu in the Image Tool.

Moving the Detail Rectangle to Change the Image View

1 Start the Overview tool by clicking the Overview button 2 in the Image
Tool toolbar or by selecting Overview from the Tools menu. The Overview
tool opens in a separate window containing a view of the entire image,
scaled to fit.

The Image Tool opens the Overview tool, by default. If the Overview tool is
already active, clicking the Overview button brings the tool to the front of
the windows open on your screen.

2 Using the mouse, move the pointer into the detail rectangle. The pointer

changes to a fleur, ¥ .

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image. The Image Tool updates the view of the image to make the
specified region visible.

Specifying the Color of the Detail Rectangle

By default, the color of the detail rectangle in the Overview tool is blue. You
might want to change the color of the rectangle to achieve better contrast
with the predominant color of the underlying image. To do this, right-click
anywhere inside the boundary of the detail rectangle and select a color from
the Set Color option on the context menu.

Getting the Position and Size of the Detail Rectangle

To get the current position and size of the detail rectangle, right-click
anywhere inside it and select Copy Position from the context menu. You can
also access this option from the Edit menu of the Overview tool.
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This option copies the position information to the clipboard. The position
information is a vector of the form [xmin ymin width height]. You can paste
this position vector into the MATLAB® workspace or another application.

Printing the View of the Image in the Overview Tool

You can print the view of the image displayed in the Overview tool. Select
the Print to Figure option from the Overview tool File menu. See “Printing
Images” on page 4-77 for more information.

Panning the Image Displayed in the Image Tool

To change the portion of the image displayed in the Image Tool, you can
use the Pan tool to move the image displayed in the window. This is called
panning the image.

1 Click the Pan tool button |ﬂ| in the toolbar or select Pan from the Tools
menu. When the Pan tool is active, a checkmark appears next to the Pan
selection in the menu.

2 Move the pointer over the image in the Image Tool, using the mouse. The
pointer changes to an open-hand shape .

3 Press and hold the mouse button and drag the image in the Image Tool.
When you drag the image, the pointer changes to the closed-hand shape 7.

4 To turn off panning, click the Pan tool button again or click the Pan option
in the Tools menu.

Note As you pan the image in the Image Tool, the Overview tool updates
the position of the detail rectangle — see “Navigating an Image Using the
Overview Tool” on page 4-23.
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Zooming In and Out on an Image in the Image Tool

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the toolbar. (You can also zoom

in or out on an image by changing the magnification — see “Specifying the
Magnification of the Image” on page 4-27 or by using the Ctrl+Plus or
Ctrl+Minus keys. Note that these are the Plus(+) and Minus(-) keys on the
numeric keypad of your keyboard.)

1 Click the appropriate magnifying glass button in the Image Tool toolbar
or select the Zoom In or Zoom Out option in the Tools menu. When the
Zoom tool is active, a checkmark appears next to the appropriate Zoom
selection in the menu.

Zoom in Zoom out
& | a|

2 Move the pointer over the image you want to zoom in or out on, using the
mouse. The pointer changes to the appropriate magnifying glass icon.
With each click, the Image Tool changes the magnification of the image,
centering the new view of the image on the spot where you clicked.

When you zoom in or out on an image, the magnification value displayed
in the magnification edit box changes and the Overview window updates
the position of the detail rectangle.

3 To leave zoom mode, click the active zoom button again to deselect it or
click the Zoom option in the Tools menu.

Specifying the Magnification of the Image

To enlarge an image to get a closer look or to shrink an image to see the
whole image in context, you can use the magnification edit box, shown in the
following figure. (You can also use the Zoom buttons to enlarge or shrink an
image. See “Zooming In and Out on an Image in the Image Tool” on page
4-27 for more information.)
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Image Tool Magnification Edit Box and Menu

To change the magnification of an image,

1 Move the pointer into the magnification edit box. The pointer changes to
the text entry cursor.

2 Type a new value in the magnification edit box and press Enter. The
Image Tool changes the magnification of the image and displays the new
view in the window.

You can also specify a magnification by clicking the menu associated with
the magnification edit box and selecting from a list of preset magnifications.
If you choose the Fit to Window option, the Image Tool scales the image
so that the entire image is visible.
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Getting Information about the Pixels in an Image

In this section...

“Determining the Value of Individual Pixels” on page 4-29
“Determining the Values of a Group of Pixels” on page 4-32

“Determining the Display Range of an Image” on page 4-36

Determining the Value of Individual Pixels

The Image Tool displays information about the location and value of
individual pixels in an image in the bottom left corner of the tool. The pixel
value and location information represent the pixel under the current location
of the pointer. The Image Tool updates this information as you move the
pointer over the image.

For example, view an image in the Image Tool.

imtool('moon.tif")
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The following figure shows the Image Tool with pixel location and value
displayed in the Pixel Information tool. For more information, see “Saving the
Pixel Value and Location Information” on page 4-30.
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Pixel Information in Image Tool

Saving the Pixel Value and Location Information

To save the pixel location and value information displayed, right-click a pixel
in the image and choose the Copy pixel info option. The Image Tool copies
the x- and y-coordinates and the pixel value to the clipboard.

To paste this pixel information into the MATLAB® workspace or another
application, right-click and select Paste from the context menu.
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Determining the Values of a Group of Pixels

To view the values of pixels in a specific region of an image displayed in the
Image Tool, use the Pixel Region tool. The Pixel Region tool superimposes a
rectangle, called the pixel region rectangle, over the image displayed in the
Image Tool. This rectangle defines the group of pixels that are displayed, in
extreme close-up view, in the Pixel Region tool window. The following figure
shows the Image Tool with the Pixel Region tool. Note how the Pixel Region
tool includes the value of each pixel in the display.
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The following sections provide more information about using the Pixel Region
tool.

® “Starting the Pixel Region Tool” on page 4-33
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o “Selecting a Region” on page 4-33

® “Customizing the View” on page 4-34

® “Determining the Location of the Pixel Region Rectangle” on page 4-34
¢ “Printing the View of the Image in the Pixel Region Tool” on page 4-36

Starting the Pixel Region Tool

To start the Pixel Region tool, click the Pixel Region button O in the Image
Tool toolbar or by selecting the Pixel Region option from the Tools menu in
the Image Tool.

Selecting a Region

1 Start the Pixel Region tool by clicking the Pixel Region button 33 in the
Image Tool toolbar, or by selecting the Pixel Region option from the Tools

menu. The Image Tool displays the pixel region rectangle in the
center of the target image and opens the Pixel Region tool.

Note Scrolling the image can move the pixel region rectangle off the part
of the image that is currently displayed. To bring the pixel region rectangle
back to the center of the part of the image that is currently visible, click
the Pixel Region button again. For help finding the Pixel Region tool in
large images, see “Determining the Location of the Pixel Region Rectangle”
on page 4-34.

2 Using the mouse, position the pointer over the pixel region rectangle. The
pointer changes to the fleur shape,*.

3 Click the left mouse button and drag the pixel region rectangle to any part
of the image. As you move the pixel region rectangle over the image, the
Pixel Region tool updates the pixel values displayed. You can also move
the pixel region rectangle by moving the scroll bars in the Pixel Region
tool window.
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Customizing the View

To get a closer view of image pixels, use the zoom buttons on the Pixel Region
tool toolbar. As you zoom in, the size of the pixels displayed in the Pixel
Region tool increase and fewer pixels are visible. As you zoom out, the size
of the pixels in the Pixel Region tool decrease and more pixels are visible.

To change the number of pixels displayed in the tool, without changing the
magnification, resize the Pixel Region tool using the mouse.

As you zoom in or out, note how the size of the pixel region rectangle changes
according to the magnification. You can resize the pixel region rectangle using
the mouse. Resizing the pixel region rectangle changes the magnification of
pixels displayed in the Pixel Region tool.

If the magnification allows, the Pixel Region tool overlays each pixel with its
numeric value. For RGB images, this information includes three numeric
values, one for each band of the image. For indexed images, this information
includes the index value and the associated RGB value. If you would rather
not see the numeric values in the display, go to the Pixel Region tool Edit
menu and clear the Superimpose Pixel Values option.
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Pixel Region Tool Edit Menu

Determining the Location of the Pixel Region Rectangle

To determine the current location of the pixel region in the target image, you
can use the pixel information given at the bottom of the tool. This information
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includes the x- and y-coordinates of pixels in the target image coordinate
system. When you move the pixel region rectangle over the target image, the
pixel information given at the bottom of the tool is not updated until you move

the cursor back over the Pixel Region tool.

You can also retrieve the current position of the pixel region rectangle by
selecting the Copy Position option from the Pixel Region tool Edit menu.
This option copies the position information to the clipboard. The position

information is a vector of the form [xmin ymin width height].

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

The following figure shows these components of the Pixel Region tool.
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Printing the View of the Image in the Pixel Region Tool

You can print the view of the image displayed in the Pixel Region tool. Select
the Print to Figure option from the Pixel Region tool File menu. See
“Printing Images” on page 4-77 for more information.

Determining the Display Range of an Image

The Image Tool provides information about the display range of pixels in a
grayscale image. The display range is the value of the axes CLim property,
which controls the mapping of image CData to the figure colormap. CLim is

a two-element vector [cmin cmax] specifying the CData value to map to the
first color in the colormap (cmin) and the CData value to map to the last color
in the colormap (cmax). Data values in between are linearly scaled.

The Image Tool displays this information in the Display Range tool at the
bottom right corner of the window. The Image Tool does not show the display

range for indexed, truecolor, or binary images.

For example, view an image in the Image Tool.

imtool('moon.tif")

The following figure shows the Image Tool displaying the image with display
range information.
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Measuring the Distance Between Two Pixels

In this section...

“Using the Distance Tool” on page 4-38
“Exporting Endpoint and Distance Data” on page 4-39

“Customizing the Appearance of the Distance Tool” on page 4-40

Using the Distance Tool

1 Display an image in the Image Tool.

imtool('moon.tif"')

2 Click the Distance tool button & in the Image Tool toolbar or select
Distance Tool from the Tools menu. The Distance tool appears as a
horizontal line displayed over the image, as shown in the following figure.

The Distance tool displays the Euclidean distance between the two
endpoints of the line in a label superimposed over the line. The tools
specifies the distance in data units determined by the XData and YData
properties, which is pixels, by default.



Measuring the Distance Between Two Pixels

Distance tool
button

<} Image Tool 1 - moon.kif B |m]|
File Toolsl Window Help

ﬁlﬂ@@ﬁ@|'ﬁ|@lﬁl@+ibmn% ~]

Distance
tool

Pixel info: (75, 125) 7 Dizplay range: [0 255]

3 Using the mouse, you can move the Distance tool over the image or, by
grabbing either one of its endpoints, resize the tool.

Exporting Endpoint and Distance Data

To save the endpoint locations and distance information, right-click the
Distance tool and choose the Export to Workspace option from the context
menu. The Distance tool opens the Export to Workspace dialog box. You
can use this dialog box to specify the names of the variables used to store

this information.
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Il
[V Paint 1 FDir‘lﬂ
[V Paint 2 FDir‘th
[ Distance Fisﬁance

OK | Cancell

After you click OK, the Distance tool creates the variables in the workspace,

as in the following example.

whos
Name Size
distance 1x1
moon 537x358
pointi 1x2
point2 1x2

Class

double array
uint8 array
double array
double array

Customizing the Appearance of the Distance Tool

Using the Distance tool context menu, you can customize many aspects of the
Distance tool appearance and behavior. Position the pointer over the line and
right-click to access these context menu options.

¢ Toggling the distance tool label on and off using the Show Distance Label

option.

¢ Changing the color used to display the Distance tool line using the Set

color option.

¢ Constraining movement of the tool to either horizontal or vertical using

the Constrain drag option.

¢ Deleting the distance tool object using the Delete option.

Right-click the Distance tool to access this context menu.
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Getting Information About an Image Using the Image
Information Tool

To get information about the image displayed in the Image Tool, use the
Image Information tool. The Image Information tool can provide two types of
information about an image:

® Basic information — Includes width, height, class, and image type. For
grayscale and indexed images, this information also includes the minimum
and maximum intensity values.

* Image metadata — Displays all the metadata from the graphics file that
contains the image. This is the same information returned by the imfinfo
function or the dicominfo function.

Note The Image Information tool can display image metadata only
when you specify the filename containing the image to Image Tool, e.g.,
imtool('moon.tif').

For example, view an image in the Image Tool.

imtool('moon.tif")

Start the Image Information tool by clicking the Image Information button

0 in the Image Tool toolbar or by selecting the Image Information option
from the Tools menu in the Image Tool.
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The following figure shows the Image Tool with the Image Information tool. In
the figure, the Image Information tool displays both basic image information
and image metadata because a file name was specified with imtool.

~Ioix]

File Tools indow Help o

ﬁ$§00?|ﬁ|@laﬂ*ialmu% LI

Image Information

tool button
Image
. Image Information {Image Tool 1 =10 x
Information - J {Imag ) =10l x|
tool — ¥
Image details (mage Toal 1 - moon.tin
Atkribute Walue
1 pvidth {columns) 358
2 |Height {rows) 537
Basicimage | | o s L
information — bt Image type intensity
S Minirmum inkensity ]
& [Maximumn inkensity 253
Kl | ]
Metadata (maan tif
Fieldname Yalue
1 Filename ¥ \bat\R2007bd\ perfect|matlabltoolboxlimagestimdemosima: a |
2 [FileModDate 04-Dec-2000 12:57:59
3 [FileSize 183950
4 |Farmat ki
5 |Formathersion 1
& width 358
7 |Height 537
Image —»3 [BitDepth 5
metadata 9 [Colar Type grayscale
10/FormatSignature [7373420]
11 ByteOrder little-endian
12 MewsubFileType 0
13 BitsPerSample 3 -
BT - | L|_I

Image Tool with Image Information Tool
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Adjusting Image Contrast Using the Adjust Contrast Tool

In this section...

“Understanding Contrast Adjustment” on page 4-43

“Starting the Adjust Contrast Tool” on page 4-44

“Using the Histogram Window to Adjust Image Contrast” on page 4-47
“Using the Window/Level Tool to Adjust Image Contrast” on page 4-48

“Modifying Image Data” on page 4-51

Understanding Contrast Adjustment

An image lacks contrast when there are no sharp differences between black
and white. Brightness refers to the overall lightness or darkness of an image.

To change the contrast or brightness of an image, the Adjust Contrast tool
performs contrast stretching. In this process, pixel values below a specified
value are displayed as black, pixel values above a specified value are displayed
as white, and pixel values in between these two values are displayed as shades
of gray. The result is a linear mapping of a subset of pixel values to the entire
range of grays, from black to white, producing an image of higher contrast.

The following figure shows this mapping. Note that the lower limit and
upper limit mark the boundaries of the window, displayed graphically as the
red-tinted window in the Adjust Contrast tool — see “Starting the Adjust
Contrast Tool” on page 4-44
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Relationship of Pixel Values to Display Range

The Adjust Contrast tool accomplishes this contrast stretching by modifying
the CLim property of the axes object that contains the image. The CLim
property controls the mapping of image pixel values to display intensities.

By default, the Image Tool sets the CLim property to the default display range
according to the data type. For example, the display range of an image of class
uint8is from 0 to 255. When you use the Adjust Contrast tool, you change
the contrast in the image by changing the display range which affects the
mapping between image pixel values and the black-to-white range. You create
a window over the range that defines which pixels in the image map to the
black in the display range by shrinking the range from the bottom up.

Starting the Adjust Contrast Tool
This section describes how to use the Adjust Contrast tool in the Image Tool.
1 View an image in the Image Tool.

imtool('pout.tif')

You can also use the Adjust Contrast tool independent of the Image Tool
by calling the imcontrast function.
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2 Click Adjust Contrast LY in the Image Tool toolbar, or select the Adjust
Contrast option from the Image Tool Tools menu. The Adjust Contrast
tool opens in a separate window containing a histogram of the image
displayed in the Image Tool. The histogram shows the data range of the
image and the display range of the image. The data range is the range
of intensity values actually used in the image. The display range is the
black-to-white mapping used to display the image, which is determined
by the image class. The Adjust Contrast tool works by manipulating the
display range; the data range of the image remains constant.

For example, in the following figure, the histogram for the image shows
that the data range of the image is 74 to 224 and the display range is the
default display range for the uint8 class, 0 to 255. The pixel values for
the image are clustered in the middle of the display range. Adjusting the
contrast spreads the pixel values across the display range, revealing much
more detail in the image.

To adjust the contrast of the image, you can manipulate the red-tinted
rectangular box, called a window, that the Adjust Contrast tool overlays
on the histogram. By changing the size and position of this window using
the mouse, you can modify the display range of the image and improve its
contrast and brightness — see “Using the Histogram Window to Adjust
Image Contrast” on page 4-47.
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Adiust the histogram above, or click and drag the mouse over the image.

Hit 'Adjust Data' to apply the changes to image data. / Adjust Deta |

Click to change pixel values in image.
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Note When you start the Adjust Contrast tool, the Image Tool also activates
the Window/Level tool, another way to adjust contrast and brightness using
the mouse. (The name comes from medical applications.) If you move the
pointer over the image, it changes to the Window/Level pointer . For more
information about using the Window/Level tool, see “Using the Window/Level
Tool to Adjust Image Contrast” on page 4-48.

When you close the Adjust Contrast tool, the Window/Level tool remains

active. To turn off the Window/Level tool, click the Window/Level button "o
or one of the navigation buttons in the Image Tool toolbar.

Using the Histogram Window to Adjust Image
Contrast

To adjust image contrast using the Adjust Contrast tool, you manipulate
the size of the red-tinted window displayed over the histogram, using any of
the following methods.

Grabbing one of the red handles on the right and left edges of the window
and dragging it. You can also change the position of the window by grabbing
the center line and dragging the window to the right or left.

Specifying the size and position of the window in the Minimum and
Maximum fields. You can also define these values by clicking the dropper
button associated with these fields. When you do this, the pointer becomes
an eye dropper shape. Position the eye dropper pointer over the pixel in
the image that you want to be the minimum (or maximum) value and click
the mouse button.

Specifying the size and position of the window in the Width and Center
fields.

Selecting the Match data range button in the Scale Display Range part of
the tool. When you choose this option, the size of the window changes from
the default display range to the data range of the image.

Trimming outliers at the top and bottom of the image data range. If you
select the Eliminate outliers option, the Adjust Contrast tool removes
the top 1% and the bottom 1%, but you can specify other percentages.

When you specify a percentage, the Adjust Contrast tool applies half the
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4-48

percentage to the top and half to the bottom. (You can perform this same
operation using the stretchlim function.)

The following figure shows these methods of adjusting contrast. The Image
Tool updates the display range values displayed in the lower right corner of
the Image Tool as you change the size of the window.

Specify minimum and

Specify midpoint

Choose autoscaling

maximum values. and width. option.
) Adjust Contrast (Figure 1) =IOl =|
File Edit ‘Window Help £
Data Rang Wincdomn \ \‘ Soale Display Range
Mirimuim: I = | | Minimum: I o2 | Wicith: 255 | [+ Match Data Range
Maximum: o0 | | Madimum: I 255 AP | Center: 12a | | Eliminate outliers: I 2 %
: ' Appaly |
Drag either
handle to . .
resize
window.
| laul.
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Adiust the histogram skove, or click and drag the mouse over the imsge.

Hit *Adjust Data' to apply the changes ta image data.

Adjust Data |

Drag midline to move window.

Using the Window/Level Tool to Adjust Image

Contrast

When you start the Adjust Contrast tool you also activate the Window/Level
tool; the pointer changes shape to the Window/Level pointer “®. You can also
start the Window/Level tool by clicking Window/Level “& in the Image Tool

toolbar.

Using the Window/Level tool, you can change the contrast and brightness of
an image by simply dragging the mouse over the image. Moving the mouse
horizontally affects contrast; moving the mouse vertically affects brightness.
Note that any contrast adjustments you make using the Window/Level tool are
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reflected immediately in the Adjust Contrast tool. For example, if you increase
the brightness, the window in the Adjust Contrast moves over the histogram.

The following table summarizes how these mouse motions affect the size and
position of the window in the Adjust Contrast tool.

Mouse Motion Effect
Horizontally to the left | #—— | Shrinks the window from both sides.
Horizontally to the ——= | Expands the window from both sides.
right
Vertically up Moves the window to the right over the
histogram, increasing brightness.
Vertically down Moves the window to the left over
the image histogram, decreasing
brightness.

To stop the Window/Level tool, click on the Window/Level button in the Image
Tool toolbar, or click any of the navigation buttons in the toolbar.

Example: Adjusting Contrast with the Window/Level Tool
1 Read an image from a sample DICOM file included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

2 View the image data using the Image Tool. Because the image data is
signed 16-bit data, this example uses the autoscaling syntax.

imtool(I, 'DisplayRange’',[])
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3 Click the Window/Level button “ to start the tool, or select
Window/Level from the Tools menu in the Image Tool. The Window/Level
tool also starts when you start the Adjust Contrast tool.

4 Move the pointer over the image. The pointer changes to the Window/Level
cursor ‘b,
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5 Click and drag the left (or right) mouse button and move the pointer
horizontally to the left or right to adjust the contrast, or vertically up or
down to change the brightness.

Modifying Image Data

By default, the Adjust Contrast tool adjusts the values of the pixels used to
display the image in the Image Tool but does not change the actual image
data. To modify pixel values in the image to reflect the contrast adjustments
you made, you must click the Adjust Data button.

The following example illustrates this process.

1 Display an image in the Image Tool. The example opens an image from a
file.

imtool('moon.tif');

2 Start the Adjust Contrast tool by clicking the Adjust contrast button, ':',
or by selecting Adjust Contrast from the Tools menu in the Image Tool.
The Window/Level tool also starts when you start the Adjust Contrast tool.

3 Adjust the contrast of the image. Use one of the mechanisms provided by
Adjust Contrast tool, such as resizing the window over the histogram. See
“Using the Histogram Window to Adjust Image Contrast” on page 4-47. You
can also adjust contrast using the Window/Level tool, moving the pointer
over the image.

4 Adjust the image data to reflect the contrast adjustment you just made.

Adjust Data
Click the Adjust Data button in the Adjust Contrast Tool.

Note The Adjust Data button is unavailable until you make a change to
the contrast of the image.

Saving the Modified Image Data

By default, if you close the Image Tool, it does not save the modified image
data. To save these changed values, use the Save As option from the Image
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Tool File menu to store the modified data in a file or use the Export to
Workspace option to save the modified data in a workspace variable.
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Cropping an Image Using the Crop Image Tool

Cropping an image means creating a new image from a part of an original
image. To crop an image using the Image Tool, use the Crop Image tool. To
use the Crop Image tool, follow this procedure.

By default, if you close the Image Tool, it does not save the modified image
data. To save the cropped image, you can use the Save As option from the
Image Tool File menu to store the modified data in a file or use the Export to
Workspace option to save the modified data in the workspace variable.

1 View an image in the Image Tool.

I = imread('moon.tif');
imtool(I)

2 Start the Crop Image tool by clicking Crop Image ‘ﬁ in the Image Tool
toolbar, or by selecting Crop Image from the Image Tool Tools menu.

When you move the pointer over the image, the pointer changes to cross

hairs —l_ .

3 Define the rectangular crop region, by clicking and dragging the mouse
over the image. You can fine tune the crop rectangle by moving and resizing
the crop rectangle using the mouse. To zoom in or out on the image while
the Crop Image tool is active, use Ctrl+Plus or Ctrl+Minus keys. Note
that these are the Plus(+) and Minus(-) keys on the numeric keypad of
your keyboard. The following figure shows a crop rectangle being defined
using the Crop Image tool.
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4 When you are finished defining the crop region, perform the crop operation.
Double-click the left mouse button or right-click inside the region and

select Crop Image from the context menu. The Image Tool displays the
cropped image.
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Image Tool1 -1

5 To save the cropped image, use the Save as option or the Export to
Workspace option on the Image Tool File menu .
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Viewing Image Sequences

In this section...

“Overview” on page 4-56
“Viewing Image Sequences in the Movie Player” on page 4-56

“Viewing Image Sequences as a Montage” on page 4-65

“Converting a Multiframe Image to a Movie” on page 4-66

Overview

Some applications create collections of images related by time, such as frames
in a movie, or by (spatial location, such as magnetic resonance imaging (MRI)
slices. These collections of images are referred to by a variety of names, such
as image sequences, image stacks, or videos.

The toolbox represents image sequences as four-dimensional arrays, where
each separate image is called a frame, all frames are the same size, and the
frames are concatenated along the fourth dimension. imtool and imshow
can display one frame at a time, using standard MATLAB® array indexing
syntax, but cannot animate the sequence or provide any navigation within
the sequence. A better choice to view image sequences is the Movie Player
(implay). The Movie Player can animate the display of frames in an image
sequence and provides playback controls that you can use to navigate among
the frames in the sequence. To get a static view of all the frames in an image
sequence at one time, use the montage function. For more information, see
these additional topics.

¢ “Viewing Image Sequences in the Movie Player” on page 4-56
¢ “Viewing Image Sequences as a Montage” on page 4-65.

® “Converting a Multiframe Image to a Movie” on page 4-66

Viewing Image Sequences in the Movie Player

This section describes how to use the Movie Player to view image sequences
and provides information about configuring the Movie Player.

e “Example: Viewing a Sequence of MRI Images” on page 4-57
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® “Configuring the Movie Player” on page 4-60
® “Specifying the Frame Rate” on page 4-63
® “Specifying the Color Map” on page 4-64

® “Getting Information about the Image Frame” on page 4-64

Example: Viewing a Sequence of MRI Images

1 Load the image sequence into the MATLAB workspace. For this example,
load the MRI data from the file mristack.mat, which is included in the
imdemos directory.

load mristack

This places a variable named mristack in your workspace. The variable is
an array of 21 grayscale frames containing MRI images of the brain. Each
frame is a 256-by-256 array of uint8 data.

mristack 256x256x21 1276256 uint8

2 View the image sequence in the Movie Player. Call implay, specifying the
name of the image sequence variable as an argument. You can also specify
the name of a file that contains an image sequence, such as an Audio Video
Interleaved (AVI) file.

implay(mristack)

You can also import an image sequence from the workspace into the Movie
Player using the Import from workspace option on the File menu.

The Movie Player opens, displaying the first frame of the image sequence.
Note how the Movie Player displays information about the image sequence,
such as the size of each frame and the total number of frames, at the
bottom of the window.
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3 Explore the image sequence using Movie Player Playback controls.

To view the image sequence or video as an animation, click the Play button
P in the Playback toolbar, select Play from the Playback menu, or press P
or the Space bar. By default, the Movie Player plays the image sequence
forward, once in its entirety, but you can view the frames in the image
sequence in many ways, described in this table. As you view an image
sequence, note how the Movie Player updates the Status Bar at the bottom
of the window.
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Viewing Playback Control Keyboard
Option Shortcut
Sipsaly Wis Click the Playback mode button ¥ in 2
dlrgctlon n the Playback toolbar or select Playback
Wthh to play the Modes from the Playback menu. You can
1mage sequence. | gaject forward, backward, or autoreverse.

As you click the playback mode button,

it cycles through these options and the

appearance changes to indicate the current

selection.
View the Click the Repeat button ¥ in the Playback | R
sequence toolbar or select Playback Modes >
repeatedly. Repeat from the Playback menu. You

toggle this option on or off.
Jump to a Click the Jump to button % in the J
gpec1ﬁc frame Playback toolbar or select Jump to from
in the sequence. the Playback menu. This options opens

a dialog box in which you can specify the

number of the frame.
Stop the Click the Stop button ® in the Playback S
sequence. toolbar or select Stop from the Playback

menu. This button is only enabled when an

image sequence is playing.
Step through the | Click one of the navigation buttons Arrow
sequence, one B M the Playback toolbar, in the keysPage
frame at atime, | gogired direction, or select an option, such Up/Page
or jump to the as Fast Forward or Rewind from the Down
beginning or end | p1,hack menu. L (last
of the sequence
(rewind) frame)

) F (first
frame)

4 Change the view of the image sequence or examine a frame more closely.
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The Movie Player supports several tools listed in the Tools menu and on
the Toolbar that you can use to examine the frames in the image sequence
more closely.

Viewing Option Playback Control

Zoom in or out on the
image, and pan to change
the view.

Click one of the zoom buttons @l 'El in the
toolbar or select Zoom In or Zoom Out from

the Tools menu. Click the Pan button in
the toolbar or select Pan from the Tools menu.
If you click Maintain fit to window button

in the toolbar or select Maintain fit to
window or from the Tools menu, the zoom
and pan buttons are disabled.

Examine an area of the

] c Click the Pixel region button 3.& in the
current frame in detail.

Playback toolbar or select Pixel Region from
the Tools menu. The Pixel Region tool closes
if you play the image sequence.

Export frame to Image . i
Tool Click the Export to Image tool button

in the Playback toolbar or select Export to
Image Tool from the File menu. The Movie
Player opens an Image Tool containing the
current frame.

Configuring the Movie Player

The Movie Player Configuration dialog box enables you to change the
appearance and behavior of the player. To open the Configuration dialog box,
select File > Configuration Set > Edit. (To load a preexisting configuration
set, select File > Configuration Set > Load.)

The Movie Player displays the Configuration dialog box. This dialog box
contains three panes, Core, Sources, and Tools, which each offer various
options. On each pane, you can select a category and then click Options to
view configuration settings.
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The following table lists the options that are available for each category on

every pane.

Pane | Option

Category

Option Descriptions

Core General Ul

Display the full source path in the title
bar check box — Select to display the full
path to the video data source in the title bar.
By default, Movie Player displays a shortened
name in the title bar.

Message log opens when menu — Specify
when the Message log window opens. You can
use the Message log window to debug issues
with video playback. By default, the window
only opens for failure messages.
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Pane

Option
Category

Option Descriptions

Core

Source Ul

Keyboard commands respect playback
mode check box — Select to make keyboard
shortcut keys aware of your playback mode
selection. If you clear this check box, the
keyboard shortcut keys behave as if the
playback mode is set to Forward play and
Repeat is set to off.

Recently used sources list parameter —
Specifies the number of sources listed in the
File menu.

Source

File

Select the Enabled check box next to enable
connections to files (the default).

Recently opened file path parameter —
Specify the directory that is displayed in the
Connect to File dialog box when you click File
> Open.

Source

Workspace

Select the Enabled check box next to enable
connections to variables in the workspace (the
default). There are no options associated with
this selection.

Source

Simulink

Select the Enabled check box next to enable
connections to Simulink models. You must
have Simulink installed.

Tools

Image Tool

Select the Enabled check box to include the
Image Tool. Open new Image Tool window
for export check box — Opens a new Image
Tool for each exported frame.

Tools

Pixel Region

Select the Enabled check box to include the
Pixel Region tool in the Movie Player (the
default).
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Pane | Option Option Descriptions
Category
Tools Image Navigation | Select the Enabled check box to include the
Tools zoom and pan tools in the Movie Player (the
default).
Tools Instrumentation | Select the Enabled check box to include
Sets instrumentation sets in the Movie Player.
Provides a way to save your current
configuration.

Saving Your Configuration Settings. To save your configuration settings
for future use, select File > Configuration Set > Save as.

Note By default, the Movie Player uses the configuration settings from the
file implay.cfg. If you want to store your configuration settings in this file,
you should first create a backup copy of the file.

Specifying the Frame Rate

To decrease or increase the playback rate, select Frame Rate from the
Playback menu, or use the keyboard shortcut T. The Frame Rate dialog box
displays the frame rate of the source, lets you change the rate at which the
Movie Player plays the image sequence or video, and displays the actual
playback rate. The playback rate is the number of frames the Movie Player
processes per second.

= ): Frame Rate [1] - Workspace: mristack |
— Frame Rate
Source rate: 20 framessec
Degired playback rate: IE frames/zec
Actual playback. rate: 0.0 frames/zec
— Frame Drop
[ Allow frame drop to achieve desied playback rate

0Ok I Cancel Aoply
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If you want to increase the actual playback rate, but your system’s hardware
cannot keep up with the desired rate, select the Allow frame drop to
achieve desired playback rate check box. This parameter enables the
Movie Player to achieve the playback rate by dropping frames. As a result,
the playback might appear choppy. When you select this option, the Frame
Rate dialog box displays several additional options that you can use to specify
the minimum and maximum refresh rates. To achieve a smoother playback,
increase the refresh rate.

Specifying the Color Map

To specify the colormap to apply to the intensity values, select Colormap
from the Tools menu, or use the keyboard shortcut C. The Movie Player
displays a dialog box that enables you to change the colormap.

« ): Colormap [1] - Workspace: mristack |

Colormap:

[ Specify range of dizplayed pixel values [0 to 255]

Min: |11 Max: [255

ok I Cancel | Help Apply

Use the Colormap parameter to specify a particular colormap.

If you know that the pixel values do not use the entire data type range, you
can select the Specify range of displayed pixel values check box and enter
the range for your data. The dialog box automatically displays the range
based on the data type of the pixel values.

Getting Information about the Image Frame
To view basic information about the image data, click the Video Information

button @ in the Movie Player toolbar or select Video Information from
the Tools menu. The Movie Player displays a dialog box containing basic
information about the image sequence, such as the size of each frame, the
frame rate, and the total number of frames.
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=) ¥ideo Information [1] - Wo |
 Wideo Info
Source bype: whortkspace
Source name: [MATLAE Expression)
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Viewing Image Sequences as a Montage

To view multiple frames in a multiframe array at one time, use the montage
function. montage displays all the image frames, arranging them into a
rectangular grid. The montage of images is a single image object. The image
frames can be grayscale, indexed, or truecolor images. If you specify indexed
images, they all must use the same colormap.

This example creates an array of truecolor images and uses montage to display
them all at once. Note how montage displays the images in a 2-by-2 grid. The
first image frame is displayed in the first position of the first row, the next
frame in the second position of the first row, and so on.

onion = imread('onion.png');

onionArray = repmat(onion, [ 1 1 1 4 ]);
montage (onionArray) ;

4-65



4 Displaying and Exploring Images

4-66

=0l ]

File Edit ‘iew Insert Tools Deskbop  Window  Help o

Ded&E heaame | 08 =8O

montage supports several optional parameters that you can use to customize
the display. For example, using the 'size' parameter, you can specify the
number of rows and columns montage uses to display the images. To display
the onion images in one horizontal row, specify the 'size' parameter with the
value [1 NaN]. When you specify NaN for a dimension, montage calculates the
number of images to display along that dimension. Using montage parameters
you can also specify which images in the image array you want to display, and
adjust the contrast of the images displayed. See montage for more information.

Converting a Multiframe Image to a Movie

To create a MATLAB movie from a multiframe image array, use the immovie
function. This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);
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In the example, X is a four-dimensional array of images that you want to
use for the movie.

To play the movie, use the movie function.

movie(mov);

This example loads the multiframe image mri.tif and makes a movie out of

it.

It won’t do any good to show the results here, so try it out; it’s fun to watch.

mri = uint8(zeros(128,128,1,27));
for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

mov = immovie(mri,map);
movie(mov);

Note To view a MATLAB movie, you must have MATLAB software installed.
To make a movie that can be run outside the MATLAB environment, use the
avifile and addframe functions to create an AVI file, or use movie2avi.
AVT files can be created using indexed and RGB images of classes uint8 and
double, and don’t require a multiframe image.
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Displaying Different Image Types

In this section...

“Displaying Indexed Images” on page 4-68
“Displaying Grayscale Images” on page 4-69
“Displaying Binary Images” on page 4-71

“Displaying Truecolor Images” on page 4-73

If you need help determining what type of image you are working with, see
“Image Types in the Toolbox” on page 2-7.

Displaying Indexed Images

To display an indexed image, using either imshow or imtool, specify both
the image matrix and the colormap. This documentation uses the variable
name X to represent an indexed image in the workspace, and map to represent
the colormap.

imshow (X, map)

or

imtool (X, map)

For each pixel in X, these functions display the color stored in the
corresponding row of map. If the image matrix data is of class double, the
value 1 points to the first row in the colormap, the value 2 points to the second
row, and so on. However, if the image matrix data is of class uint8 or uint16,
the value 0 (zero) points to the first row in the colormap, the value 1 points to
the second row, and so on. This offset is handled automatically by the imtool
and imshow functions.

If the colormap contains a greater number of colors than the image, the
functions ignore the extra colors in the colormap. If the colormap contains
fewer colors than the image requires, the functions set all image pixels over
the limits of the colormap’s capacity to the last color in the colormap. For
example, if an image of class uint8 contains 256 colors, and you display it
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with a colormap that contains only 16 colors, all pixels with a value of 15 or
higher are displayed with the last color in the colormap.

Displaying Grayscale Images

To display a grayscale image, using either imshow or imtool, specify the
image matrix as an argument. This documentation uses the variable name I
to represent a grayscale image in the workspace.

imshow(I)

or

imtool(I)

Both functions display the image by scaling the intensity values to serve
as indices into a grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0
is displayed as white, and pixel values in between are displayed as shades
of gray. If I is uint8, then a pixel value of 255 is displayed as white. If I is
uint16, then a pixel value of 65535 is displayed as white.

Grayscale images are similar to indexed images in that each uses an m-by-3
RGB colormap, but you normally do not specify a colormap for a grayscale
image. MATLAB® displays grayscale images by using a grayscale system
colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems.
(See “Displaying Colors” on page 14-2 for a detailed explanation.)

Displaying Grayscale Images That Have Unconventional
Ranges

In some cases, the image data you want to display as a grayscale image
might have a display range that is outside the conventional toolbox range
(i.e., [0,1] for single or double arrays, [0,255] for uint8 arrays, [0,65535] for
uint16 arrays, or [-32767,32768] for int16 arrays). For example, if you filter
a grayscale image, some of the output data might fall outside the range of
the original data.

4-69



4 Displaying and Exploring Images

4-70

To display unconventional range data as an image, you can specify the display
range directly, using this syntax for both the imshow and imtool functions.

imshow(I, 'DisplayRange’',[low high])
or
imtool (I, 'DisplayRange',[low high])

If you use an empty matrix ([ ]) for the display range, these functions scale
the data automatically, setting 1ow and high to the minimum and maximum
values in the array.

The next example filters a grayscale image, creating unconventional range
data. The example calls imtool to display the image, using the automatic
scaling option. If you execute this example, note the display range specified in
the lower right corner of the Image Tool window.

I imread('testpati.png');
J = filter2([1 2;-1 -21,1);
imtool(J, 'DisplayRange',[]);

i
a

File Tools ‘Window Help
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Pizel info: (4, %) Intensity Display range: [-631 763]
1

Disploy runge
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Displaying Binary Images

In MATLAB, a binary image is of class 1logical. Binary images contain only
0’s and 1’s. Pixels with the value 0 are displayed as black; pixels with the
value 1 are displayed as white.

Note For the toolbox to interpret the image as binary, it must be of class
logical. Grayscale images that happen to contain only 0’s and 1’s are not
binary images.

To display a binary image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a binary image into the
MATLAB workspace and then displays the image. This documentation uses
the variable name BW to represent a binary image in the workspace

BW = imread('circles.png');
imshow (BW)

or

imtool (BW)

Changing the Display Colors of a Binary Image

You might prefer to invert binary images when you display them, so that 0
values are displayed as white and 1 values are displayed as black. To do this,
use the NOT (~) operator in MATLAB. (In this figure, a box is drawn around
the image to show the image boundary.) For example:
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imshow (~BW)
or

imtool (~BW)

You can also display a binary image using the indexed image colormap
syntax. For example, the following command specifies a two-row colormap
that displays 0’s as red and 1’s as blue.

imshow(BW,[1 0 0; 0 0 1])

imtool(BW,[1 0 0; 0 0 11])
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Displaying Truecolor Images

Truecolor images, also called RGB images, represent color values directly,
rather than through a colormap. A truecolor image is an m-by-n-by-3 array.
For each pixel (r,c) in the image, the color is represented by the triplet
(r,c,1:3).

To display a truecolor image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a truecolor image into
the MATLAB workspace and then displays the image. This documentation
uses the variable name RGB to represent a truecolor image in the workspace

RGB = imread( peppers.png');
imshow (RGB)

or

imtool (RGB)
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Systems that use 24 bits per screen pixel can display truecolor images directly,
because they allocate 8 bits (256 levels) each to the red, green, and blue color
planes. On systems with fewer colors, imshow displays the image using a
combination of color approximation and dithering. See “Displaying Colors”
on page 14-2 for more information.

Note If you display a color image and it appears in black and white, check if
the image is an indexed image. With indexed images, you must specify the
colormap associated with the image. For more information, see “Displaying
Indexed Images” on page 4-68.
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Adding a Colorbar to a Displayed Image

To display an image with a colorbar that indicates the range of intensity
values, first use the imshow function to display the image in a MATLAB®
figure window and then call the colorbar function to add the colorbar to
the image.

When you add a colorbar to an axes object that contains an image object,
the colorbar indicates the data values that the different colors in the image
correspond to.

If you want to add a colorbar to an image displayed in the Image Tool, select
the Print to Figure option from the Image Tool File menu. The Image
Tool displays the image in a separate figure window to which you can add a
colorbar.

Seeing the correspondence between data values and the colors displayed by
using a colorbar is especially useful if you are displaying unconventional
range data as an image, as described under “Displaying Grayscale Images
That Have Unconventional Ranges” on page 4-69.

In the example below, a grayscale image of class uint8 is filtered, resulting in
data that is no longer in the range [0,255].

RGB = imread('saturn.png');

I = rgb2gray(RGB);
h=1[121; 000; -1 -2 -1];
I2 = filter2( I);

imshow(I2," DlsplayRange',[]), colorbar
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Printing Images

If you want to output a MATLAB® image to use in another application (such
as a word-processing program or graphics editor), use imwrite to create a file
in the appropriate format. See “Writing Image Data to a File” on page 3-5 for
details.

If you want to print an image, use imshow to display the image in a MATLAB
figure window. If you are using the Image Tool, you must use the Print to
Figure option on the Image Tool File menu. When you choose this option, the
Image Tool opens a separate figure window and displays the image in it. You
can access the standard MATLAB printing capabilities in this figure window.
You can also use the Print to Figure option to print the image displayed in
the Overview tool and the Pixel Region tool.

Once the image is displayed in a figure window, you can use either the
MATLAB print command or the Print option from the File menu of the
figure window to print the image. When you print from the figure window,
the output includes nonimage elements such as labels, titles, and other
annotations.

Printing and Handle Graphics Object Properties

The output reflects the settings of various properties of Handle Graphic
objects. In some cases, you might need to change the settings of certain
properties to get the results you want. Here are some tips that might be
helpful when you print images:

® Image colors print as shown on the screen. This means that images are not
affected by the figure object’s InvertHardcopy property.

¢ To ensure that printed images have the proper size and aspect ratio,
set the figure object’s PaperPositionMode property to auto. When
PaperPositionMode is set to auto, the width and height of the printed
figure are determined by the figure’s dimensions on the screen. By default,
the value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set (0, 'DefaultFigurePaperPositionMode’', 'auto')

4-77



4 Displaying and Exploring Images

4-78

For detailed information about printing with File/Print or the print
command (and for information about Handle Graphics), see “Printing and
Exporting” in the MATLAB Graphics documentation. For a complete list
of options for the print command, enter help print at the MATLAB
command-line prompt or see the print command reference page in the
MATLAB documentation.
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Setting Toolbox Display Preferences

In this section...

“Retrieving the Values of Toolbox Preferences” on page 4-79

“Setting the Values of Toolbox Preferences” on page 4-80

Retrieving the Values of Toolbox Preferences

You can use Image Processing Toolbox™ preferences to control certain
characteristics of how imshow and imtool display images on your screen. For
example, using toolbox preferences, you can specify the initial magnification
used by imtool and imshow.

To determine the current value of a preference, use the iptgetpref

function. This example uses iptgetpref to determine the value of the
ImtoolInitialMagnification preference.

iptgetpref ('ImtoolInitialMagnification')
ans =

100

Preference names are case insensitive and can be abbreviated. For a complete
list of toolbox preferences, see the iptsetpref reference page.
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Setting the Values of Toolbox Preferences

To specify the value of a toolbox preference, use the iptsetpref function. This
example calls iptsetpref to specify that imshow resize the figure window so
that it fits tightly around displayed images.

iptsetpref('ImshowBorder', 'tight');

For detailed information about toolbox preferences and their values, see the
iptsetpref reference page.

The value you specify lasts for the duration of the current MATLAB® session.

To preserve your preference settings from one session to the next, include the
iptsetpref commands in your startup.m file.
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Building GUIs with
Modular Tools

This chapter describes how to use the toolbox modular tools to create custom

image processing applications.

Overview (p. 5-2)
Displaying the Target Image (p. 5-10)

Creating the Modular Tools (p. 5-11)

Customizing Modular Tool
Interactivity (p. 5-28)

Creating Your Own Modular Tools
(p. 5-33)

Lists the modular interactive tools

Describes how to display the target
image, which is typically the first
step in creating an image processing
GUI

Describes how to create the modular
tool

Describes how to use the modular
tool APIs to create custom
connectivity between the modular
tools and the target image.

Describes the utility function the
toolbox provides to help you create
your own modular tools
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Overview

The toolbox includes several modular interactive tools that you can activate
from the command line and use with images displayed in a MATLAB® figure
window, called the target image in this documentation. The tools are modular
because they can be used independently or in combination to create custom
graphical user interfaces (GUIs) for image processing applications. Using the
tools typically involves the following steps.

Step| Description

Notes

1 Display the image to be
processed (called the target
image) in a figure window.

Use the imshow function to display
the target image, see “Displaying
the Target Image” on page 5-10.
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Step

Description

Notes

Create the modular tool,
associating it with the target
image.

You use the modular tool creation
functions to create the tools — see
Summary of Modular Tools on page
5-4

Most of the tools associate
themselves with the image in the
current axes, by default, but you
can specify the handle to a specific
image object, or a handle to a
figure, axes, or uipanel object that
contains an image. See “Creating
the Modular Tools” on page 5-11.

Depending on how you designed
your GUI, you might also want

to specify the parent object of the
modular tool itself. This is optional;
by default, the tools either use the
same parent as the target image or
open in a separate figure window.
See “Specifying the Parent of a
Modular Tool” on page 5-15 for more
information.

You might need to specify the
position of the graphics objects in
the GUI, including the modular
tools. See “Positioning the Modular
Tools in a GUI” on page 5-18 for
more information.

Set up interactivity between
the tool and the target image.
(Optional)

The modular tools all set up their
interactive connections to the target
image automatically. However,
you can also specify custom
connectivity using modular tool
APIs. See “Customizing Modular
Tool Interactivity” on page 5-28 for
more information.
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The following table lists the modular tools in alphabetical order. The table

includes an illustration of each tool and the funct

ion you use to create it.

Note The Image Processing Toolbox™ GUI, Image Tool, uses these modular
tools — see “Using the Image Tool to Explore Images” on page 4-12.

Summary of Modular Tools

Modular Tool Example

Description

Adjust Contrast splays a histogram of the
tool e ER WhEm Kol farget image and enables

Data Rarg — Wincloee : : .
’;mimm | [ - ﬁ mghteractive adjustment of

neontrast and brightness

Maimum: | 255 | [Maximurm: i

vy manipulation of the

display range.

T
|
|
|

| R SR

U';e the imcontrast
function to create the
tool in a separate figure
window and associate it
with an image.

Crop Image tool

Displays a draggable,
resizable rectangle on

an image. You can move
and resize the rectangle
to define the crop region.
Double-click to perform
the crop operation or
select Crop Image from the
context menu.

Use the imcrop function
to create the tool and
associate it with an image.
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Summary of Modular Tools (Continued)

Modular Tool

Example

Description

Display Range
tool

Display range: [0 255]

Displays a text string
identifying the display
range values of the
associated image.

Use the imdisplayrange
function to create the tool,
associate it with an image,
and embed it in a figure or
uipanel.

Distance tool

Displays a draggable,
resizable line on an image.
Superimposed on the line
is the distance between the
two endpoints of the line.
The distance is measured
in units specified by

the XData and YData
properties, which is pixels
by default.

Use the imdistline
function to create the tool
and associate it with an
image.
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Summary of Modular Tools (Continued)

Modular Tool Example Description
Image I e pRis plays basic attributes

Information tool

Image details {mage Toal 1 - moon tify

Attribute Walue

3Class uirt

4 Image type intensity
S Minimum intensity ]

B Maximum intensity 253

Metadata (moon.tif)

about the target image. If
the image displayed was
specified as a graphics
file, the tool displays any
metadata that the image
file might contain.

Fieldnams
1 |Filename Wwnathearksiceye
2 |FileModDate 04-Dec-200013.9
3 [FileSize 183950
4 |Format it
5 |Formatersion n
L a - 358

Use the imageinfo
“fiinction to create the
teol in a separate figure
Y{zindow and associate it

| with an image.

Magnification box

I 100%

Creates a text edit box
containing the current
magnification of the target
image. Users can change
the magnification of the
image by entering a new
magnification value.

Use immagbox to create
the tool, associate it with
an image, and embed it in
a figure or uipanel.

Note The target image
must be contained in a
scroll panel.
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Summary of Modular Tools (Continued)

Modular Tool Example Description

Overview tool =Io) x| Displays the target image
Fie Edt Window Help = in its entirety with the
i . @

portion currently visible in
the scroll panel outlined by
a rectangle superimposed
on the image. Moving
the rectangle changes the
portion of the target image
that is currently visible in
the scroll panel.

Use imoverview to create
the tool in a separate figure
window and associate it
with an image.

Use imoverviewpanel to
create the tool in a uipanel
that can be embedded
within another figure or
uipanel.

Note The target image
must be contained in a
scroll panel.
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Summary of Modular Tools (Continued)

Modular Tool

Example

Description

Pixel Information
tool

Pixel info: (418, 2811 143

Displays information
about the pixel the mouse
is over in the target image.

Use impixelinfo to create
the tool, associate it with
an image, and display it in
a figure or uipanel.

If you want to display only
the pixel values, without
the Pixel info label, use
impixelinfoval.

Pixel Region tool

<) Pixel Region (Imag

File Edit ‘Window Help

=10l x|
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w7

215 211 1219 21? 218 221 218 220 218 ZUQ ZA

191, 188 188188 211 1213] 1QQ 189 195 1841

i

Pixel info: (134, 230) 183

Display pixel values for
a specified region in the
target image.

Use impixelregion

to create the tool in a
separate figure window
and associate it with an
image.

Use impixelregionpanel
to create the tool as

a uipanel that can be
embedded within another
figure or uipanel.
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Summary of Modular Tools (Continued)

Modular Tool

Example

Description

Save Image tool

i [ ceshicn -

Displag the Save Image

! |"dialog box. Use this to
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specify|the name of an
output image and choose
the file format used to
store the image.

Use imsave to create the

tool in a separate figure
window and associate it

with an image.

Scroll Panel tool
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Displaying the Target Image

As the foundation for any image processing GUI you create, use imshow to
display the target image (or images) in a MATLAB® figure window. (You
can also use the MATLAB image or imagesc functions.) Once the image is
displayed in the figure, you can associate any of the modular tools with the
image displayed in the figure.

This example uses imshow to display an image in a figure window.

himage = imshow( 'pout.tif');

Because some of the modular tools add themselves to the figure window
containing the image, make sure that the Image Processing Toolbox™
ImshowBorder preference is set to 'loose', if you are using the imshow
function. (This is the default setting.) By including a border, you ensure that
the modular tools are not displayed over the image in the figure.
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Creating the Modular Tools

In this section...

“Overview” on page 5-11

“Associating Modular Tools with a Particular Image” on page 5-12
“Getting the Handle of the Target Image” on page 5-14
“Specifying the Parent of a Modular Tool” on page 5-15
“Positioning the Modular Tools in a GUI” on page 5-18

“Example: Building a Pixel Information GUI” on page 5-19
“Adding Navigation Aids to a GUI” on page 5-22

Overview

To associate a modular tool with a target image displayed in a &tm_matlab;
figure window, you must create the tool using the appropriate tool creation
function. You specify a handle to the target image as an argument to the tool
creation function. The function creates the tool and automatically sets up the
interactivity connection between the tool and the target image.

By default, most of the modular tool creation functions support a no-argument
syntax that uses the image in the current figure as the target image. If

the current figure contains multiple images, the tools associate themselves
with the first image in the figure object’s children (the last image created).
impixelinfo, impixelinfoval and imdisplayrange can work with multiple
images in a figure.

For example, to use the Pixel Information tool with a target image, display
the image in a figure window, using imshow, and then call the impixelinfo
function to create the tool. In this example, the image in the current figure is
the target image.

imshow( 'pout.tif');
impixelinfo
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The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner of the window. The Pixel Information
tool automatically sets up a connection to the target image: when you move
the pointer over the image, the tool displays the x- and y-coordinates and
value of the pixel under the pointer.

JFiguer ~1al x|

File Edit Yiew Insert Tools Deskbop Window Help u

NEEE KRR M® L 0B 7O

Target image

Pixel
information tool ————— Pixelinto: x, ) Intensity

Figure Window with Pixel Information Tool

Associating Modular Tools with a Particular Image

You can specify the target image of the modular tool when you create it by
passing a handle to the target image as an argument to the modular tool
creation function. You can also specify a handle to a figure, axes, or uipanel
object that contains the target image.

Continuing the example in the previous section, you might want to add the

Display Range tool to the figure window that already contains the Pixel
Information tool. To do this, call the imdisplayrange function, specifying the
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handle to the target image. You could also have specified the handle of the
figure, axes, or uipanel object containing the target image.

himage = imshow( 'pout.tif');
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);

Note that the example retrieves handles to the uipanel objects created by
the impixelinfo and imdisplayrange functions; both tools are uipanel
objects. It can be helpful to get handles to the tools if you want to change
their positioning. See “Positioning the Modular Tools in a GUI” on page 5-18
for more information.

The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner and the Display Range tool in the
lower right corner of the window. The Display Range tool automatically sets
up a connection to the target image: when you move the pointer over the
image (or images) in the figure, the Display Range tool shows the display
range of the image.
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Getting the Handle of the Target Image

The examples in the previous section use the optional imshow syntax that
returns a handle to the image displayed, himage. When creating GUIs with
the modular tools, having a handle to the target image can be useful. You can
get the handle when you first display the image, using this optional imshow
syntax. You can also get a handle to the target image using the imhandles
function. The imhandles function returns all the image objects that are
children of a specified figure, axes, uipanel, or image object.
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For example, imshow returns a handle to the image in this syntax.

hfig = figure;
himage = imshow( 'moon.tif"')
himage

152.0055

When you call the imhandles function, specifying a handle to the figure (or
axes) containing the image, it returns a handle to the same image.

himage?2
himage?2

imhandles (hfig)

152.0055

Specifying the Parent of a Modular Tool

When you create a modular tool, in addition to specifying the target image,
you can optionally specify the object that you want to be the parent of the
tool. By specifying the parent, you determine where the tool appears on your
screen. Using this syntax of the modular tool creation functions, you can add
the tool to the figure window containing the target image, open the tool in a
separate figure window, or create some other combination.

Specifying the parent is optional; the modular tools all have a default
behavior. Some of the smaller tools, such as the Pixel Information tool, use
the parent of the target image as their parent, inserting themselves in the
same figure window as the target image. Other modular tools, such as the
Pixel Region tool or the Overview tool, open in separate figures of their own.

Tools With Separate Creation Functions

Two of the tools, the Pixel Region tool and the Overview tool, have a separate
creation function to provide this capability. Their primary creation functions,
imoverview and impixelregion, open the tools in a separate figure window.
To specify a different parent, you must use the imoverviewpanel and
impixelregionpanel functions.
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Note The Overview tool and the Pixel Region tool provide additional
capabilities when created in their own figure windows. For example, both
tools include zoom buttons that are not part of their uipanel versions.

Example: Embedding the Pixel Region Tool in an Existing
Figure

This example shows the default behavior when you create the Pixel Region
tool using the impixelregion function. The tool opens in a separate figure
window, as shown in the following figure.

himage = imshow( 'pout.tif')
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);
hpixreg = impixelregion(himage);
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Target Image with Pixel Region Tool in Separate Window (Default)
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To embed the Pixel Region tool in the same window as the target image, you
must specify the handle of the target image’s parent figure as the parent of
the Pixel Region tool when you create it.

The following example creates a figure and an axes object, getting handles to
both objects. The example needs these handles to perform some repositioning
of the objects in the figure to ensure their visibility. See “Positioning the
Modular Tools in a GUI” on page 5-18 for more information. The example
then creates the modular tools, specifying the figure containing the target
image as the parent of the Pixel Region tool. Note that the example uses the
impixelregionpanel function to create the tool.

hfig = figure;

hax = axes('units', 'normalized', 'position',[0 .5 1 .5]);
himage = imshow( 'pout.tif')

hpixelinfopanel = impixelinfo(himage);

hdrangepanel = imdisplayrange(himage);

hpixreg = impixelregionpanel(hfig,himage);

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4]);
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The following figure shows the Pixel Region embedded in the same figure
as the target image.
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Target Image with Embedded Pixel Region Tool

Positioning the Modular Tools in a GUI

When you create the modular tools, they have default positioning behavior.
For example, the impixelinfo function creates the tool as a uipanel object
that is the full width of the figure window, positioned in the lower left corner
of the target image figure window.

Because the modular tools are constructed from standard Handle Graphics
objects, such as uipanel objects, you can use properties of the objects to change
their default positioning or other characteristics.

For example, in “Specifying the Parent of a Modular Tool” on page 5-15, when
the Pixel Region tool was embedded in the same figure window as the target
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image, the example had to reposition both the image object and the Pixel
Region tool uipanel object to make them both visible in the figure window.

Specifying the Position with a Position Vector

To specify the position of a modular tool or other graphics object, set the
value of the Position property of the object. As the value of this property,
you specify a four-element position vector [left bottom width height],
where left and bottom specify the distance from the lower left corner of
the parent container object, such as a figure. The width and height specify
the dimensions of the object.

When you use a position vector, you can specify the units of the values in
the vector by setting the value of the Units property of the object. To allow
better resizing behavior, use normalized units because they specify the
relative position, not the exact location in pixels. See the reference page for
the Handle Graphics object for more details.

For example, when you first create an embedded Pixel Region tool in a figure,
it appears to take over the entire figure because, by default, the position
vector is set to [0 0 1 1], in normalized units. This position vector tells the
tool to align itself with the bottom left corner of its parent and fill the entire
object. To accommodate the image and the Pixel Information tool and Display
Range tools, change the position of the Pixel Region tool in the lower half of
the figure window, leaving room at the bottom for the Pixel Information and
Display Range tools. Here is the position vector for the Pixel Region tool.

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4])

To accommodate the Pixel Region tool, reposition the target image so that it
fits in the upper half of the figure window, using the following position vector.
To reposition the image, you must specify the Position property of the axes
object that contains it; image objects do not have a Position property.

set(hax, 'Units', 'normalized', 'Position',[0 0.5 1 0.5])

Example: Building a Pixel Information GUI

This example shows how to use the tools to create a simple GUI that provides
information and pixels and features in an image. The GUI displays an image
and includes the following modular pixel information tools:
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Display Range tool

* Distance tool

Pixel Information tool

Pixel Region tool panel

The example suppresses the figure window toolbar and menu bar because
the standard figure zoom tools are not compatible with the toolbox modular
navigation tools — see “Adding Navigation Aids to a GUI” on page 5-22.

function my_pixinfotool(im)

% Create figure, setting up properties

hfig = figure('Toolbar', 'none’,...
'Menubar', 'none',...
‘Name', 'My Pixel Info Tool',...
"NumberTitle', 'off',...
"IntegerHandle', 'off');

% Create axes and reposition the axes

to accommodate the Pixel Region tool panel
hax = axes('Units', 'normalized’,...
"Position',[0 .5 1 .5]);

% Display image in the axes and get a handle to the image
himage = imshow(im);

% Add Distance tool, specifying axes as parent
hdist = imdistline(hax);

% Add Pixel Information tool, specifying image as parent
hpixinfo = impixelinfo(himage);

% Add Display Range tool, specifying image as parent
hdrange = imdisplayrange(himage);

% Add Pixel Region tool panel, specifying figure as parent
% and image as target
hpixreg = impixelregionpanel(hfig,himage);

% Reposition the Pixel Region tool to fit in the figure
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% window, leaving room for the Pixel Information and
% Display Range tools.
set(hpixreg, 'units', 'normalized', 'position',[0 .08 1 .4])

To use the tool, pass it an image that is already in the MATLAB® workspace.

pout = imread('pout.tif');
my_pixinfotool(pout)

The tool opens a figure window, displaying the image in the upper half, with
the Distance tool overlaid on the image, and the Pixel Information tool,
Display Range tool, and the Pixel Region tool panel in the lower half of the
figure.
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Custom Image Display Tool with Pixel Information
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Adding Navigation Aids to a GUI

Note The toolbox modular navigation tools are incompatible with standard
MATLAB figure window navigation tools. When using these tools in a GUI,
suppress the toolbar and menu bar in the figure windows to avoid conflicts
between the tools.

The toolbox includes several modular tools that you can use to add navigation
aids to a GUI application:

e Scroll Panel
® Overview tool

® Magnification box

The Scroll Panel is the primary navigation tool; it is a prerequisite for the
other navigation tools. When you display an image in a Scroll Panel, the
tool displays only a portion of the image, if it is too big to fit into the figure
window. When only a portion of the image is visible, the Scroll Panel adds
horizontal and vertical scroll bars, to enable viewing of the parts of the image
that are not currently visible.

Once you create a Scroll Panel, you can optionally add the other modular
navigation tools: the Overview tool and the Magnification tool. The Overview
tool displays a view of the entire image, scaled to fit, with a rectangle
superimposed over it that indicates the part of the image that is currently
visible in the scroll panel. The Magnification Box displays the current
magnification of the image and can be used to change the magnification.

The following sections provide more details.

e “Understanding Scroll Panels” on page 5-23 — Adding a scroll panel to an
image display changes the relationship of the graphics objects used in the
display. This section provides some essential background.

e “Example: Building a Navigation GUI for Large Images” on page 5-25 —
This section shows how to add a scroll panel to an image display.
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Understanding Scroll Panels

When you display an image in a scroll panel, it changes the object hierarchy
of your displayed image. This diagram illustrates the typical object hierarchy

for an image displayed in an axes object in a figure object.

hfig = figure;

himage

The following figure shows this object hierarchy.

Figure

Image

Object Hierarchy of Image Displayed in a Figure

imshow('concordaerial.png');

When you call the imscrollpanel function to put the target image in a
scrollable window, this object hierarchy changes. For example, this code
adds a scroll panel to an image displayed in a figure window, specifying the
parent of the scroll panel and the target image as arguments. The example
suppresses the figure window toolbar and menu bar because they are not

compatible with the scroll panel navigation tools.

hfig =

himage
hpanel

figure('Toolbar', 'none',...

'"Menubar', 'none');
imshow('concordaerial.png');
imscrollpanel (hfig,himage) ;
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The following figure shows the object hierarchy after the call to
imscrollpanel. Note how imscrollpanel inserts new objects (shaded

in gray) into the hierarchy between the figure object and the axes object
containing the image. (To change the image data displayed in the scroll bar,
use the replaceImage function in the imscrollpanel API.)

Figure

Uipanel
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Object Hierarchy of Image Displayed in Scroll Panel
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The following figure shows how these graphics objects appear in the scrollable
image as it is displayed on the screen.

Serolloble imoge

Seroll panel

.
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Corner
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Components of a Scroll Panel

Example: Building a Navigation GUI for Large Images

If your work typically requires that you view large images, you might want to
create a custom image display function that includes the modular navigation
tools.

This example creates a tool that accepts an image as an argument and displays
the image in a scroll panel with an Overview tool and a Magnification box.
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Note Because the toolbox scrollable navigation is incompatible with standard
MATLAB figure window navigation tools, the example suppresses the toolbar
and menu bar in the figure window.

function my_large_image_display(im)

% Create a figure without toolbar and menubar.
hfig = figure('Toolbar', 'none’,...
'Menubar', 'none',...
"Name', 'My Large Image Display Tool',...
"NumberTitle', 'off',...
"IntegerHandle', 'off');

% Display the image in a figure with imshow.
himage = imshow(im);

% Add the scroll panel.
hpanel = imscrollpanel(hfig,himage);

% Position the scroll panel to accommodate the other tools.
set(hpanel, 'Units', 'normalized', 'Position',[0 .1 1 .9]1);

% Add the Magnification box.
hMagBox = immagbox(hfig,himage);

% Position the Magnification box
pos = get(hMagBox, 'Position');
set(hMagBox, 'Position',[0 O pos(3) pos(4)]);

% Add the Overview tool.
hovervw = imoverview(himage);

To use the tool, pass it a large image that is already in the MATLAB
workspace.

big image = imread('peppers.png');
my_large_image_display(big_image)
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The tool opens a figure window, displaying the image in a scroll panel with
the Overview tool and the Magnification Box tool.

) My Large Image Display Tool

Overview tool
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File Edit ‘Windomw Help L
L s @

Muognifiention

box 100%

Custom Image Display Tool with Navigation Aids
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Customizing Modular Tool Interactivity

In this section...

“Overview” on page 5-28

“Example: Building an Image Comparison Tool” on page 5-29

Overview

When you create a modular tool and associate it with a target image, the

tool automatically makes the necessary connections to the target image to
do its job. For example, the Pixel Information tool sets up a connection to
the target image so that it can display the location and value of the pixel

currently under the pointer.

As another example, the Overview tool sets up a two-way connection to the
target image:

¢ Target image to the Overview tool — If the visible portion of the image
changes, by scrolling, panning, or by changing the magnification, the
Overview tool changes the size and location of the detail rectangle to the
indicate the portion of the image that is now visible.

¢ Overview tool to the target image — If a user moves the detail
rectangle in the Overview tool, the portion of the target image visible in
the scroll panel is updated.

The modular tools accomplish this interactivity by using callback
properties of the graphics objects. For example, the figure object supports a
WindowButtonMotionFcn callback that executes whenever the mouse button
is depressed. You can customize the connectivity of a modular tool by using
the application programmer interface (API) associated with the tool to set up
callbacks to get notification of events.

For example, the Magnification box supports a single API function:
setMagnification. You can use this API function to set the magnification
value displayed in the Magnification box. The Magnification box automatically
notifies the scroll panel to change the magnification of the image based on the
value. The scroll panel also supports an extensive set of API functions. To get
information about these APIs, see the reference page for the modular tool.
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Example: Building an Image Comparison Tool

To illustrate how to use callbacks to make the connections required for
interactions between tools, this example uses the Scroll Panel API to build a
simple image comparison GUI. This custom tool displays two images side by
side in scroll panels that are synchronized in location and magnification. The
custom tool also includes an Overview tool and a Magnification box.

function my_image_compare_tool(left_image, right_image)

% Create the figure

hFig = figure('Toolbar', 'none',...
'Menubar', 'none', ...
‘Name','My Image Compare Tool',...
"NumberTitle','off',...
'"IntegerHandle', 'off');

% Display left image
subplot(121)
hImL = imshow(left_image);

% Display right image
subplot(122)
hImR = imshow(right_image);

% Create a scroll panel for left image

hSpL = imscrollpanel(hFig,hImL);

set (hSpL, 'Units', 'normalized’,...
'Position',[0 0.1 .5 0.9])

% Create scroll panel for right image

hSpR = imscrollpanel(hFig,hImR);

set (hSpR, 'Units', 'normalized’,...
'Position',[0.5 0.1 .5 0.9])

% Add a Magnification box

hMagBox = immagbox (hFig,hImL);

pos = get(hMagBox, 'Position');

set (hMagBox, 'Position',[0 O pos(3) pos(4)])

%% Add an Overview tool
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imoverview(hImL)

%% Get APIs from the scroll panels
= iptgetapi(hSpL);
iptgetapi(hSpR);

[
T T
'—l. '—l.
D
1

%% Synchronize left and right scroll panels
apiL.setMagnification(apiR.getMagnification())
apilL.setVisiblelLocation(apiR.getVisiblelLocation())

% When magnification changes on left scroll panel,
% tell right scroll panel
apiL.addNewMagnificationCallback(apiR.setMagnification);

% When magnification changes on right scroll panel,
% tell left scroll panel
apiR.addNewMagnificationCallback(apilL.setMagnification);

% When location changes on left scroll panel,
% tell right scroll panel
apilL.addNewLocationCallback(apiR.setVisiblelLocation);

% When location changes on right scroll panel,
% tell left scroll panel
apiR.addNewLocationCallback(apiL.setVisiblelLocation);

The tool sets up a complex interaction between the scroll panels with just

a few calls to Scroll Panel API functions. In the code, the tool specifies

a callback function to execute every time the magnification changes. The
function specified is the setMagnification API function of the other scroll
panel. Thus, whenever the magnification changes in one of the scroll panels,
the other scroll panel changes its magnification to match. The tool sets up a
similar connection for position changes.

The following figure is a sequence diagram that shows the interaction

between the two scroll panels set up by the comparison tool for both changes
in magnification and location.
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Scroll Panel Connections in Custom Image Comparison Tool

To use the image comparison tool, pass it two images as arguments.

left_image = imread('peppers.png');
right_image = edge(left_image(:,:,1),'canny');
my_image_compare_tool(left_image,right_image);
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The tool opens a figure window, displaying the two images side by side, in
separate scroll panels. The custom compare tool also includes an Overview
tool and a Magnification box. When you move the detail rectangle in the
Overview tool or change the magnification in one image, both images respond.

<) My Image Compare Tool ;lglll

) oves it

File Edit ‘Windomw Help L

&m@

100%

Custom Image Comparison Tool with Synchronized Scroll Panels
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Creating Your Own Modular Tools

In this section...

“Overview” on page 5-33

“Example: Creating an Angle Measurement Tool” on page 5-35

Overview

Because the toolbox uses an open architecture for the modular interactive
tools, you can extend the toolbox by creating your own modular interactive
tools, using standard Handle Graphics concepts and techniques. To help you
create tools that integrate well with the existing modular interactive tools, the
toolbox includes many utility functions that perform commonly needed tasks.

The utility functions can help check the input arguments to your tool, add
callback functions to a callback list or remove them from a list, and align
figure windows in relation to a fixed window. The toolbox also provides a set
of functions that you can use to define a region-of-interest of various shapes,
including points, lines, rectangles, ellipses, polygons, and freehand shapes —
see “Example: Creating an Angle Measurement Tool” on page 5-35 for more
information.

The following table lists these utility functions in alphabetical order. See the
function’s reference page for more detailed information.

Utility Function Description

getimagemodel Retrieve image model objects from image handles

getrangefromclass Get default display range of image, based on its
class

imagemodel Access to properties of an image relevant to its
display

imattributes Return information about image attributes

imellipse Create draggable, resizable ellipse

imfreehand Create draggable freehand region

imgca Get handle to current axes containing an image
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Utility Function Description

imgcf Get handle to most recent current figure
containing an image

imgetfile Display Open Image dialog box

imhandles Get all image handles

imline Create draggable, resizable line

impoint Create draggable point

impoly Create draggable, resizable polygon

imputfile Display Save Image dialog box

imrect Create draggable, resizable rectangle

iptaddcallback Add function handle to a callback list

iptcheckconn Check validity of connectivity argument

iptcheckhandle Check validity of image handle argument

iptcheckinput Check validity of input argument

iptcheckmap Check validity of colormap argument

iptchecknargin Check number of input arguments

iptcheckstrs Check validity of string argument

iptgetapi Get application programmer interface (API) for
a handle

iptGetPointerBehavior| Retrieve pointer behavior from HG object

ipticondir Return names of directories containing IPT and
MATLAB® icons

iptnum2ordinal Convert positive integer to ordinal string

iptPointerManager Install mouse pointer manager in figure

iptremovecallback Delete function handle from callback list

iptSetPointerBehavior| Store pointer behavior in HG object

iptwindowalign Align figure windows
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Example: Creating an Angle Measurement Tool

The toolbox includes a set of functions that you can use to enable users of
your image processing GUI to define a region-of-interest (ROI) on the target
image. The functions implement drawing of various shapes of ROI, such

as rectangles, ellipses, and polygons, and returning information about the
coordinates that define the ROI. These ROI objects support methods that you
can use to control aspects of its appearance and behavior.

To illustrate how to use these ROI tools, this example creates a simple angle
measurement tool This custom tool uses impoly to create a two-segment
polyline on an image and displays the angle created by the two line segments
in a title in the figure. Users of the tool can move the polyline anywhere on
the image and view the angle formed by the two line segments.

function my_angle_measurement_tool(im)

% Create figure, setting up properties

figure('Name', 'My Angle Measurement Tool',...
‘NumberTitle','off',...
‘IntegerHandle', 'off');

% Display image in the axes % Display image

imshow(im)

% Get size of image.

m = size(im,1);

n = size(im,2);

% Get center point of image for initial positioning.

midy = ceil(m/2);

midx ceil(n/2);

% Position first point vertically above the middle.

firstx = midx;

firsty = midy - ceil(m/4);

lastx = midx + ceil(n/4);

lasty = midy;

% Create a two-segment right-angle polyline centered in the image.

h = impoly(gca,[firstx,firsty;midx,midy;lastx,lasty], 'Closed',false);

api = iptgetapi(h);

initial_position = api.getPosition()

% Display initial position

updateAngle(initial_position)

% set up callback to update angle in title.

api.addNewPositionCallback (@updateAngle);
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fcn = makeConstrainToRectFcn('impoly',get(gca, 'XLim'),get(gca, ' 'YLim'));

api.setPositionConstraintFcn(fcn);

% Callback function that calculates the angle and updates the title.
Function receives an array containing the current x,y position of

the three vertices.

function updateAngle(p)

% Create two vectors from the vertices.

vl = [x1 - x2, y1 - y2]

v2 = [x3 - x2, Y3 - y2]

1 [p(1,1)-p(2,1), p(1,2)-p(2,2)];

v2 = [p(3,1)-p(2,1), p(3,2)-p(2,2)];

% Find the angle.

theta = acos(dot(v1,v2)/(norm(vi)*norm(v2)));

% Convert it to degrees.

angle _degrees = (theta * (180/pi));

% Display the angle in the title of the figure.

title(sprintf('(%1.0f) degrees',angle_degrees))

[)
)

o°
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To use the angle measurement tool, pass it an image.

I = imread('gantrycrane.png');
my_angle _measurement_tool(I);

The tool opens a figure window, displaying the image with the angle measure
tool centered over the image in a right angle. Move the pointer over any of
the vertices of the tool to measure any angle in the image. In the following
figure, the tool is measuring an angle in the image. Note the size of the angle
displayed in the title of the figure.
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Spatial Transformations

A spatial transformation (also known as a geometric operation) modifies the
spatial relationship between pixels in an image, mapping pixel locations

in an input image to new locations in an output image. The toolbox
includes functions that perform certain specialized spatial transformations,
such as resizing and rotating an image. In addition, the toolbox includes
functions that you can use to perform many types of 2-D and N-D spatial
transformations, including custom transformations.

Resizing an Image (p. 6-2)

Rotating an Image (p. 6-5)

Cropping an Image (p. 6-6)

Performing General 2-D Spatial
Transformations (p. 6-8)

Performing N-Dimensional Spatial
Transformations (p. 6-20)

Example: Performing Image
Registration (p. 6-22)

Describes how to use the imresize
function to change the size of an
image

Describes how to use the imrotate
function to rotate an image

Describes how to use the imcrop
function to extract a rectangular
portion of an image

Describes how to perform a general
spatial transformation of a 2-D
image

Describes the toolbox functions you
can use to perform N-D spatial
transformations of arrays

Shows how to use some capabilities
of imtransform to view the results of
image registration
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Resizing an Image

In this section...

“Overview” on page 6-2
“Specifying the Interpolation Method” on page 6-3
“Preventing Aliasing by Using Filters” on page 6-4

Overview

To resize an image, use the imresize function. When you resize an image,
you specify the image to be resized and the magnification factor. To enlarge
an image, specify a magnification factor greater than 1. To reduce an image,
specify a magnification factor between 0 and 1.

. For example, the command below increases the size of an image by 1.25 times.

I = imread('circuit.tif');
J imresize(I,1.25);
imshow(I)

figure, imshow(dJ)

Image Courtesy of Steve Decker and Shujoat Nadeem



Resizing an Image

You can specify the size of the output image by passing a vector that contains
the number of rows and columns in the output image. If the specified size
does not produce the same aspect ratio as the input image, the output image
will be distorted. If you specify one of the elements in the vector as NaN,
imresize calculates the value for that dimension to preserve the aspect ratio
of the image.

This example creates an output image with 100 rows and 150 columns.

I imread('circuit.tif');
J imresize(I,[100 150]);
imshow(I)

figure, imshow(J)

To perform the resizing required for multiresolution processing, use the
impyramid function.

Specifying the Interpolation Method

Interpolation is the process used to estimate an image value at a location in
between image pixels. When imresize enlarges an image, the output image
contains more pixels than the original image. The imresize function uses
interpolation to determine the values for the additional pixels.

Interpolation methods determine the value for an interpolated pixel by finding
the point in the input image that corresponds to a pixel in the output image
and then calculating the value of the output pixel by computing a weighted
average of some set of pixels in the vicinity of the point. The weightings are
based on the distance each pixel is from the point.

By default, imresize uses bicubic interpolation to determine the values of
pixels in the output image, but you can specify other interpolation methods
and interpolation kernels. In the following example, imresize uses the
bilinear interpolation method. See the imresize reference page for a complete
list of interpolation methods and interpolation kernels available. You can also
specify your own custom interpolation kernel. .

Y = imresize(X,[100 150], 'bilinear"')
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Preventing Aliasing by Using Filters

When you reduce the size of an image, you lose some of the original pixels
because there are fewer pixels in the output image and this can cause
aliasing. Aliasing that occurs as a result of size reduction normally appears
as “stair-step” patterns (especially in high-contrast images), or as moiré
(ripple-effect) patterns in the output image.

By default, imresize uses antialiasing to limit the impact of aliasing on the
output image for all interpolation types except nearest neighbor. To turn
off antialiasing, specify the 'Antialiasing' parameter and set the value
to false.

Note Even with antialiasing, resizing an image can introduce artifacts,
because information is always lost when you reduce the size of an image.

For more information, see the reference page for imresize.
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Rotating an Image

To rotate an image, use the imrotate function. When you rotate an image,
you specify the image to be rotated and the rotation angle, in degrees. If you
specify a positive rotation angle, imrotate rotates the image counterclockwise;
if you specify a negative rotation angle, imrotate rotates the image clockwise.

By default, imrotate creates an output image large enough to include

the entire original image. Pixels that fall outside the boundaries of the
original image are set to 0 and appear as a black background in the output
image. You can, however, specify that the output image be the same size

as the input image, using the 'crop' argument. Similarly, imrotate uses
nearest-neighbor interpolation by default to determine the value of pixels in
the output image, but you can specify other interpolation methods. See the
imrotate reference page for a list of supported interpolation methods.

This example rotates an image 35° counterclockwise and specifies bilinear
interpolation.

I = imread('circuit.tif');

J = imrotate(I,35, 'bilinear');
imshow(I)

figure, imshow(J)
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Cropping an Image

Note You can also crop an image interactively using the Image Tool — see
“Cropping an Image Using the Crop Image Tool” on page 4-53.

To extract a rectangular portion of an image, use the imcrop function. Using
imcrop, you can specify the crop region interactively using the mouse or
programmatically by specifying the size and position of the crop region.

This example illustrates an interactive syntax. The example reads an image
into the MATLAB® workspace and calls imcrop specifying the image as an
argument. imcrop displays the image in a figure window and waits for you to
draw the crop rectangle on the image. When you move the pointer over the

image, the shape of the pointer changes to cross hairs —|_ . Click and drag the
pointer to specify the size and position of the crop rectangle. You can move
and adjust the size of the crop rectangle using the mouse. When you are
satisfied with the crop rectangle, double-click to perform the crop operation, or
right-click inside the crop rectangle and select Crop Image from the context
menu. imcrop returns the cropped image in J.

I = imread('circuit.tif')
J imcrop(I);



Cropping an Image

Resize
handle

Crop rectangle

Fix Aspect Ratio

Crop Image tool
Crop Image context menu

Cancel

You can also specify the size and position of the crop rectangle as parameters
when you call imcrop. Specify the crop rectangle as a four-element position
vector, [xmin ymin width height].

In this example, you call imcrop specifying the image to crop, I, and the crop
rectangle. imcrop returns the cropped image in J.

I = imread('circuit.tif');
J imcrop(I,[60 40 100 901]);
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Performing General 2-D Spatial Transformations

In this section...

“Overview” on page 6-8
“Example: Performing a Translation” on page 6-9
“Defining the Transformation Data” on page 6-14

“Creating TFORM Structures” on page 6-16

“Performing the Spatial Transformation” on page 6-17

Overview
Performing general 2-D spatial transformations is a three-step process:

1 Define the parameters of the spatial transformation. See “Defining the
Transformation Data” on page 6-14 for more information.

2 Create a transformation structure, called a TFORM structure, that defines
the type of transformation you want to perform.

A TFORM is a MATLAB® structure that contains all the parameters required
to perform a transformation. You can define many types of spatial
transformations in a TFORM, including affine transformations, such as
translation, scaling, rotation, and shearing, projective transformations, and
custom transformations. You use the maketform function to create TFORM
structures. For more information, see “Creating TFORM Structures” on
page 6-16. (You can also create a TFORM using the cp2tform function —
see Chapter 7, “Image Registration”.

3 Perform the transformation. To do this, you pass the image to be
transformed and the TFORM structure to the imtransform function.

The following figure illustrates this process.

6-8
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Overview of General 2-D Spatial Transformation Process

Example: Performing a Translation

This example illustrates how to use the maketform and imtransform
functions to perform a 2-D spatial transformation of an image. The example
performs a simple affine transformation called a translation. In a translation,
you shift an image in coordinate space by adding a specified value to the x-
and y-coordinates. The example illustrates the following steps:

e “Step 1: Import the Image to Be Transformed” on page 6-9

e “Step 2: Define the Spatial Transformation” on page 6-10
e “Step 3: Create the TFORM Structure” on page 6-10

e “Step 4: Perform the Transformation” on page 6-11

e “Step 5: View the Output Image” on page 6-12

Step 1: Import the Image to Be Transformed

Bring the image to be transformed into the MATLAB workspace. This
example creates a checkerboard image, using the checkerboard function. By
default, checkerboard creates an 80-by-80 pixel image.

cb =

checkerboard;

imshow(ch)
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Original Image

Step 2: Define the Spatial Transformation

You must define the spatial transformation that you want to perform. For
many types of 2-D spatial transformations, such as affine transformations,
you can use a 3-by-3 transformation matrix to specify the transformation.
You can also use sets of points in the input and output images to specify the
transformation and let maketform create the transformation matrix. For more
information, see “Defining the Transformation Data” on page 6-14.

This example uses the following transformation matrix to define a spatial
transformation called a translation.

xform = [

- O

1
0
0

- O O

40 4

o

In this matrix, xform(3,1) specifies the number of pixels to shift the image
in the horizontal direction and xform(3,2) specifies the number of pixels to
shift the image in the vertical direction.

Step 3: Create the TFORM Structure

You use the maketform function to create a TFORM structure. As arguments,
you specify the type of transformation you want to perform and the
transformation matrix (or set of points) that you created to define the
transformation. For more information, see “Creating TFORM Structures”
on page 6-16.

This example calls maketform, specifying 'affine' as the type of
transformation, because translation is a type of affine transformation, and
xform, the transformation matrix created in step 2.

tform_translate = maketform('affine',xform);
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Step 4: Perform the Transformation

To perform the transformation, call the imtransform function, specifying
the image you want to transform and the TFORM structure that stores all the
required transformation parameters. For more information, see “Performing
the Spatial Transformation” on page 6-17.

The following example passes to the imtransform function the checkerboard
image, created in Step 1, and the TFORM structure created in Step 3.
imtransform returns the transformed image.

[cb_trans xdata ydata]= imtransform(cb, tform_translate);

The example includes two optional output arguments: xdata and ydata.
These arguments return the location of the output image in output coordinate
space. xdata contains the x-coordinates of the pixels at the corners of the
output image. ydata contains the y-coordinates of these same pixels.

Note This section uses the spatial coordinate system when referring to pixel
locations. In the spatial coordinates system, the x- and y-coordinates specify
the center of the pixel. For more information about the distinction between
spatial coordinates and pixel coordinates, see “Image Coordinate Systems”
on page 2-3.

The following figure illustrates this translation graphically. By convention,
the axes in input space are labeled © and v and the axes in output space are
labelled x and y. In the figure, note how imtransform modifies the spatial
coordinates that define the locations of pixels in the input image. The pixel
at (1,1) is now positioned at (41,41). (In the checkerboard image, each black,
white, and gray square is 10 pixels high and 10 pixels wide.)

6-11
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Pixel Values and Pixel Locations. The previous figure shows how
imtransform changes the locations of pixels between input space and output
space. The pixel located at (1,1) in the input image is now located at (41,41)
in the output image. Note, however, that the value at that pixel location has
not changed. Pixel (1,1) in the input image is black and so is pixel (41,41)
in the output image.

imtransform determines the value of pixels in the output image by mapping
the new locations back to the corresponding locations in the input image
(inverse mapping). In a translation, because the size and orientation of the
output image is the same as the input image, this is a one to one mapping

of pixel values to new locations. For other types of transformations, such

as scaling or rotation, imtransform interpolates within the input image to
compute the output pixel value. See imtransform for more information about
supported interpolation methods.

Step 5: View the Output Image

After performing the transformation, you might want to view the transformed
image. The example uses the imshow function to display the transformed
image.

6-12
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figure, imshow(cb_trans)

Translated Image

Understanding the Display of the Transformed Image. When viewing
the transformed image, especially for a translation operation, it might appear
that the transformation had no effect. The transformed image looks identical
to the original image. However, if you check the xdata and ydata values
returned by imtransform, you can see that the spatial coordinates have
changed. The upper left corner of the input image with spatial coordinates
(1,1) is now (41,41). The lower right corner of the input image with spatial
coordinates (80,80) is now (120,120). The value 40 has been added to each,
as expected.

xdata =

41 120
ydata =

41 120

The reason that no change is apparent in the visualization is because
imtransform sizes the output image to be just large enough to contain the
entire transformed image but not the entire output coordinate space. To see
the effect of the translation in relation to the original image, you can use
several optional input parameters that specify the size of output image and
how much of the output space is included in the output image.

The example uses two of these optional input parameters, XData and YData,
to specify how much of the output coordinate space to include in the output
image. The example sets the XData and YData to include the origin of the
original image and be large enough to contain the entire translated image.
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Note All the pixels that are now in the output image that do not correspond
to locations in the input image are black. imtransform assigns a value, called
a fill value, to these pixels. This example uses the default fill value but you
can specify a different one — see “Specifying Fill Values” on page 6-18.

cb_trans2 = imtransform(cb, tform_translate,...
‘XData',[1 (size(cb,2)+xform(3,1)],...
‘YData', [1 (size(cb,1)+xform(3,2)]);
figure, imshow(cb_trans2)

View of the Translated Image in Relation to Original Coordinate Space

Defining the Transformation Data

Before you can perform a spatial transformation, you must first define the
parameters of the transformation. The following sections describe two ways
you can define a spatial transformation.

® “Using a Transformation Matrix” on page 6-14
e “Using Sets of Points” on page 6-15

With either method, you pass the result to the maketform function to create
the TFORM structure required by imtransform.

Using a Transformation Matrix

The maketform function can accept transformation matrices of various
sizes for N-D transformations. Because imtransform only performs 2-D
transformations, you can only specify 3-by-3 transformation matrices.
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For example, you can use a 3-by-3 matrix to specify any of the affine
transformations. For affine transformations, the last column must contain
00 1([zeros(N,1); 11). You can specify a 3-by-2 matrix. In this case,
imtransform automatically adds this third column.

The following table lists the affine transformations you can perform with
imtransform along with the transformation matrix used to define them. You
can combine multiple affine transformations into a single matrix.

Affine
Transform | Example | Transformation Matrix
Translation P o0 o t, specifies the
displacement along
¢ 1. 0 the x axis
te ty 1 t, specifies the
displacement along
the y axis.
Scale [ o 0 s, specifies the scale
* factor along the x axis
0 s, 0 .
s, specifies the scale
_U 0 1 factor along the y axis.
Shear 1 sh. 0 sh_ specifies the shear
¥ factor along the x axis
sh, 1 0 .
sh, specifies the shear
_U 0 1 factor along the y axis.
Rotation /A\ cos (a) sin(a) 0 q speciﬁes the angle
(,\ /'? . of rotation.
vy -s1nfqg) cos(q) O

0 0 1

Using Sets of Points

Instead of specifying a transformation matrix, you optionally use sets of points
to specify a transformation and let maketform infer the transformation matrix.

6-15



6 Spatial Transformations

6-16

To do this for an affine transformation, you must pick three non-collinear
points in the input image and in the output image. (The points form a
triangle.) For a projective transformation, you must pick four points. (The
points form a quadrilateral.)

This example picks three points in the input image and three points in the
output image created by the translation performed in “Example: Performing a
Translation” on page 6-9. The example passes these points to maketform and
lets maketform infer the transformation matrix. The three points mark three
corners of one of the checkerboard squares in the input image and the same
square in the output image.

in_points = [11 11;21 11; 21 21]
out_points = [51 51;61 51;61 61]

tform2 = maketform('affine',inpts,outpts)

Creating TFORM Structures

After defining the transformation data (“Defining the Transformation
Data” on page 6-14), you must create a TFORM structure to specify the
spatial transformation. You use the maketform function to create a TFORM
structure. You pass the TFORM structure to the imtransform to perform the
transformation. (You can also create a TFORM using the cp2tform function.
For more information, see Chapter 7, “Image Registration”.)

The example creates a TFORM structure that specifies the parameters
necessary for the translation operation.

tform_translate = maketform('affine',xform)

To create a TFORM you must specify the type of transformation you want to
perform and pass in the transformation data. The example specifies 'affine’
as the transformation type because translation is an affine transformation but
maketform also supports projective transformations. In addition, by using the
custom and composite options you can specify a virtually limitless variety

of spatial transformations to be used with imtransform. The following table
lists the transformation types supported by maketform.
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Transformation

Type Description

'affine' Transformation that can include translation, rotation,
scaling, and shearing. Straight lines remain straight,
and parallel lines remain parallel, but rectangles might
become parallelograms.

'projective’ Transformation in which straight lines remain straight
but parallel lines converge toward vanishing points.
(The vanishing points can fall inside or outside the
image — even at infinity.)

"box' Special case of an affine transformation where each
dimension is shifted and scaled independently.

‘custom' User-defined transformation, providing the
forward and/or inverse functions that are called by
imtransform.

'composite'’ Composition of two or more transformations.

Performing the Spatial Transformation

Once you specify the transformation in a TFORM struct, you can perform the
transformation by calling imtransform. The imtransform function performs
the specified transformation on the coordinates of the input image and creates
an output image.

The translation example called imtransform to perform the transformation,
passing it the image to be transformed and the TFORM structure. imtransform
returns the transformed image.

cb_trans = imtransform(cb, tform_translate);

imtransform supports several optional input parameters that you can use to
control various aspects of the transformation such as the size of the output
image and the fill value used. To see an example of using the XData and
YData input parameters, see “Example: Performing Image Registration” on
page 6-22. For more information about specifying fill values, see “Specifying
Fill Values” on page 6-18.

6-17



6 Spatial Transformations

6-18

Specifying Fill Values

When you perform a transformation, there are often pixels in the output
image that are not part of the original input image. These pixels must

be assigned some value, called a fill value. By default, imtransform sets
these pixels to zero and they are displayed as black. Using the FillValues
parameter with the imtransform function, you can specify a different color.

Grayscale Images. If the image being transformed is a grayscale image,
you must specify a scalar value that specifies a shade of gray.

For example, in “Step 5: View the Output Image” on page 6-12, where the
example displays the translated checkerboard image in relation to the original
coordinate space, you can specify a fill value that matches the color of the gray
squares, rather than the default black color.

cb_fill = imtransform(cb, tform_translate,...
'XData', [1 (size(cb,2)+xform(3,1))1,...
'YData', [1 (size(cb,1)+xform(3,2))]
'Fillvalues', .7 );

figure, imshow(cb_fill)

youon

Translated Image with Gray Fill Value

RGB Images. If the image being transformed is an RGB image, you can use
either a scalar value or a 1-by-3 vector. If you specify a scalar, imtransform
uses that shade of gray for each plane of the RGB image. If you specify a
1-by-3 vector, imtransform interprets the values as an RGB color value.

For example, this code translates an RGB image, specifying an RGB color
value as the fill value. The example specifies one of the light green values in
the image as the fill value.
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rgb = imread('onion.png');
xform = [ 100

010

40 40 1 ]

tform_translate = maketform('affine',xform);

cb_rgb = imtransform(rgb, tform_translate,...
'XData', [1 (size(rgb,2)+xform(3,1))1,...
'YData', [1 (size(rgb,1)+xform(3,2))],...
'FillValues', [187;192;57]);

figure, imshow(cb_rgb)

Translated RGB Image with Color Fill Value

If you are transforming multiple RGB images, you can specify different fill
values for each RGB image. For example, if you want to transform a series of
10 RGB images, a 4-D array with dimensions 200-by-200-by-3-by-10, you have
several options. You can specify a single scalar value and use a grayscale fill
value for each RGB image. You can also specify a 1-by-3 vector to use a single
color value for all the RGB images in the series. To use a different color fill
value for each RGB image in the series, specify a 3-by-10 array containing
RGB color values.
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Performing N-Dimensional Spatial Transformations
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The following functions, when used in combination, provide a vast array
of options for defining and working with 2-D, N-D, and mixed-D spatial
transformations:

®* maketform

e fliptform

e tformfwd

e tforminv

e findbounds

® makeresampler
e tformarray

e imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd
and tforminv functions internally to encapsulate the forward transformations
needed to determine the extent of an output image or array and/or to map the
output pixels/array locations back to input locations. You can use tformfwd
and tforminv to explore the geometric effects of a transformation by applying
them to points and lines and plotting the results. They support a consistent
handling of both image and pointwise data.

The following example, “Performing the Spatial Transformation” on page
6-17, uses the makeresampler function with a standard interpolation method.
You can also use it to obtain special effects or custom processing. For example,
you could specify your own separable filtering/interpolation kernel, build a
custom resampler around the MATLAB® interp2 or interp3 functions, or
even implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional
array transformations. The arrays do not even need to have the same
dimensions. The output can have either a lower or higher number of
dimensions than the input.
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For example, if you are sampling 3-D data on a 2-D slice or manifold, the
input array might have a lower dimensionality. The output dimensionality
might be higher, for example, if you combine multiple 2-D transformations
into a single 2-D to 3-D operation.

For example, this code uses imtransform to perform a projective
transformation of a checkerboard image.

I = checkerboard(20,1,1);

figure; imshow(I)

T = maketform('projective',[1 1; 41 1; 41 41; 141],...
[5 5; 40 5; 35 30; -10 30]);

R makeresampler('cubic', 'circular');

K imtransform(I T,R,'Size',[100 100], 'XYScale',1);

figure, imshow(K

.

Original Transformed
image image

The imtransform function options let you control many aspects of the
transformation. For example, note how the transformed image appears

to contain multiple copies of the original image. This is accomplished

by using the 'Size' option, to make the output image larger than the
input image, and then specifying a padding method that extends the input
image by repeating the pixels in a circular pattern. The Image Processing
Toolbox™ Image Transformation demos provide more examples of using the
imtransform function and related functions to perform different types of
spatial transformations.
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Example: Performing Image Registration

In this section...

“Step 1: Read in Base and Unregistered Images” on page 6-22
“Step 2: Display the Unregistered Image” on page 6-22

“Step 3: Create a TFORM Structure” on page 6-23

“Step 4: Transform the Unregistered Image” on page 6-23

“Step 5: Overlay Registered Image Over Base Image” on page 6-24
“Step 6: Using XData and YData Input Parameters” on page 6-25
“Step 7: Using XData and YData Output Values” on page 6-26

Step 1: Read in Base and Unregistered Images

This example is intended to clarify the spatial relationship between the
output image and the base image in image registration. The example
illustrates use of the optional 'XData' and 'YData' input parameters and
the optional xdata and ydata output values. To begin the example, read
the base and unregistered images from sample data files that come with the
Image Processing Toolbox™ software.

base = imread('westconcordorthophoto.png');
unregistered = imread('westconcordaerial.png');

Step 2: Display the Unregistered Image

Display the unregistered image.

iptsetpref('ImshowAxesVisible','on')

imshow(unregistered)

text(size(unregistered,2),size(unregistered,1)+30,
'Image courtesy of mPower3/Emerge',
'FontSize',7, 'HorizontalAlignment', 'right');
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a0 100 150 200 250 300 350

Image courtesy of mPower?/Bmenge

Step 3: Create a TFORM Structure

Create a TFORM structure using preselected control points. Start by loading a
MAT-file that contains preselected control points for the base and unregistered
images.

load westconcordpoints
tform = cp2tform(input_points, base_points, 'projective');

Step 4: Transform the Unregistered Image

Use imtransform to perform the transformations necessary to register

the unregistered image with the base image. This code uses the optional
Fillvalues input parameter to specify a fill value (white). This fill value
helps when the example overlays the transformed image, registered, on the
base image to check the registration in a later step.

registered = imtransform(unregistered, tform,...
'FillValues', 255);
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Step 5: Overlay Registered Image Over Base Image

Overlay a semitransparent version of the registered image over the base
image. Notice how the two images appear misregistered because the example
assumes that the images are in the same spatial coordinate system. The next
steps provide two ways to remedy this display problem.

figure; imshow(registered);
hold on

h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

&0 100 180 200 250 300 350 400

Registered Image with Base Image Overlay
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Step 6: Using XData and YData Input Parameters

One way to ensure that the registered image appears registered with the
base image is to truncate the registered image by discarding any areas that
would extrapolate beyond the extent of the base image. You use the 'XData'
and 'YData' parameters to do this.

registered1 = imtransform(unregistered,tform,...
‘Fillvalues', 255,...
'XData', [1 size(base,2)],...
'YData', [1 size(base,1)]);

Display the registered image, overlaying a semitransparent version of the
base image for comparison. The registration is evident, but part of the
unregistered image has been discarded. The next step provides another
solution in which the entire registered image is visible.

figure; imshow(registeredi)
hold on

h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

a0 100 180 200 2580 300 340

Registered Image Truncated with Base Image Overlay
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Step 7: Using XData and YData Output Values

Another approach is to compute the full extent of the registered image and
use the optional imtransform syntax that returns the x- and y-coordinates
that indicate the transformed image’s position relative to the base image’s
pixel coordinates.

[registered2 xdata ydata] = imtransform(unregistered, tform,...
'FillValues', 255);

Display the registered image. Overlay a semi-transparent version of the base
image for comparison. Adjust the axes to include the full base image. In this
case, notice how the registration is evident and the full extent of both images
is visible as well.

figure; imshow(registered2, 'XData', xdata, 'YData', ydata)
hold on

h = imshow(base, gray(256));

set(h, 'AlphaData', 0.6)

ylim = get(gca, 'YLim');

set(gca, 'YLim', [0.5 ylim(2)])

a0 100 150 200 250 300 380 400



Image Registration

This chapter describes the image registration capabilities of the Image
Processing Toolbox™ software. Image registration is the process of aligning
two or more images of the same scene. Image registration is often used as a
preliminary step in other image processing applications.

Registering an Image (p. 7-2) Steps you through an example of the
image registration process

Transformation Types (p. 7-13) Describes the types of supported
transformations

Selecting Control Points (p. 7-14) Describes how to use the Control

Point Selection Tool (cpselect)
to select control points in pairs of

images
Using Correlation to Improve Describes how to use the cpcorr
Control Points (p. 7-31) function to fine-tune your control

point selections
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Registering an Image

In this section...

“Overview” on page 7-2
“Point Mapping” on page 7-2
“Using cpselect in a Script” on page 7-4

“Example: Registering to a Digital Orthophoto” on page 7-6

Overview

Image registration is the process of aligning two or more images of the
same scene. Typically, one image, called the base image or reference image,
is considered the reference to which the other images, called input images,
are compared. The object of image registration is to bring the input image
into alignment with the base image by applying a spatial transformation to
the input image. The differences between the input image and the output
image might have occurred as a result of terrain relief and other changes in
perspective when imaging the same scene from different viewpoints. Lens
and other internal sensor distortions, or differences between sensors and
sensor types, can also cause distortion.

A spatial transformation maps locations in one image to new locations in
another image. (For more details, see Chapter 6, “Spatial Transformations”)
Determining the parameters of the spatial transformation needed to bring the
images into alignment is key to the image registration process.

Image registration is often used as a preliminary step in other image
processing applications. For example, you can use image registration to align
satellite images of the earth’s surface or images created by different medical
diagnostic modalities (MRI and SPECT). After registration, you can compare
features in the images to see how a river has migrated, how an area is flooded,
or to see if a tumor is visible in an MRI or SPECT image.

Point Mapping

The Image Processing Toolbox™ software provides tools to support point
mapping to determine the parameters of the transformation required to
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bring an image into alignment with another image. In point mapping, you
pick points in a pair of images that identify the same feature or landmark in
the images. Then, a spatial mapping is inferred from the positions of these
control points.

Note You might need to perform several iterations of this process,
experimenting with different types of transformations, before you achieve a
satisfactory result. In some cases, you might perform successive registrations,
removing gross global distortions first, and then removing smaller local
distortions in subsequent passes.

The following figure provides a graphic illustration of this process. This
process is best understood by looking at an example. See “Example:
Registering to a Digital Orthophoto” on page 7-6 for an extended example.
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Input image Base image

Image to be Image you are
registered — 1 /J -«— comparing it to.

Select control points in
images using cpselect

Fine tune point selection
using cpcorr (optional)

Pass points to cp2tform to
create spatial transformation
structure (TFORM).

Perform the spatial transformation, passing
imtransform the TFORM and the input image.

Aligned
Image

]

Using cpselect in a Script

If you need to perform the same kind of registration for many images, you
automate the process by putting all the steps in a script. For example, you
could create a script that launches the Control Point Selection Tool with an
input and a base image. The script could then use the control points selected
to create a TFORM structure and pass the TFORM and the input image to
the imtransform function, outputting the registered image.

To do this, specify the 'Wait' option when you call cpselect to launch the
Control Point Selection Tool. With the 'Wait' option, cpselect blocks the
MATLAB® command line until control points have been selected and returns
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the sets of control points selected in the input image and the base image as a
return values. If you do not use the 'Wait' option, cpselect returns control
immediately and your script will continue without allowing time for control
point selection. In addition, without the 'Wait' option, cpselect does not
return the control points as return values. For an example, see the cpselect
reference page.
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Example: Registering to a Digital Orthophoto

This example illustrates the steps involved in performing image registration
using point mapping. These steps include:

“Step 1: Read the Images ” on page 7-6
® “Step 2: Choose Control Points in the Images” on page 7-8

e “Step 3: Save the Control Point Pairs to the MATLAB® Workspace” on
page 7-9

o “Step 4: Fine-Tune the Control Point Pair Placement (Optional)” on page
7-10

® “Step 5: Specify the Type of Transformation and Infer Its Parameters”
on page 7-10

e “Step 6: Transform the Unregistered Image” on page 7-11

Step 1: Read the Images

In this example, the base image is westconcordorthophoto.png, the
MassGIS georegistered orthophoto. It is a panchromatic (grayscale) image,
supplied by the Massachusetts Geographic Information System (MassGIS),
that has been orthorectified to remove camera, perspective, and relief
distortions (via a specialized image transformation process). The orthophoto
is also georegistered (and geocoded) — the columns and rows of the digital
orthophoto image are aligned to the axes of the Massachusetts State Plane
coordinate system. In the orthophoto, each pixel center corresponds to a
definite geographic location, and every pixel is 1 meter square in map units.

The image to be registered is westconcordaerial.png, a digital aerial
photograph supplied by mPower3/Emerge, and is a visible-color RGB image.
The aerial image is geometrically uncorrected: it includes camera perspective,
terrain and building relief, internal (lens) distortions, and it does not have
any particular alignment or registration with respect to the earth.

The following example reads both images into the MATLAB workspace and
displays them using

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)
unregistered = imread('westconcordaerial.png');
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figure, imshow(unregistered)

You do not have to read the images into the MATLAB workspace. The
cpselect function accepts file specifications for grayscale images. However,
if you want to use cross-correlation to tune your control point positioning,
the images must be in the workspace.

Image (aurtesy of mPawerd/Emerge Image (aurtesy of MassGIS

Aerial Photo Image Orthophoto Image
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Step 2: Choose Control Points in the Images

The toolbox provides an interactive tool, called the Control Point Selection
Tool, that you can use to pick pairs of corresponding control points in both
images. Control points are landmarks that you can find in both images, like a
road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as
arguments the input and base images.

cpselect(unregistered, orthophoto)

The Control Point Selection Tool displays two views of both the input image
and the base image in which you can pick control points by pointing and
clicking. For more information, see “Selecting Control Points” on page 7-14.
This figure shows the Control Point Selection Tool with four pairs of control
points selected. The number of control point pairs you pick is at least partially
determined by the type of transformation you want to perform (specified in
Step 5). See “Transformation Types” on page 7-13 for information about the
minimum number of points required by each transformation.
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Step 3: Save the Control Point Pairs to the MATLAB® Workspace

In the Control Point Selection Tool, click the File menu and choose the
Export Points to Workspace option. See “Exporting Control Points to the
Workspace” on page 7-28 for more information.
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For example, the following set of control points in the input image represent
spatial coordinates; the left column lists x-coordinates, the right column lists
y-coordinates.

input_points =

118.0000 96.0000
304.0000 87.0000
358.0000 281.0000
127.0000 292.0000

Step 4: Fine-Tune the Control Point Pair Placement (Optional)
This is an optional step that uses cross-correlation to adjust the position of the
control points you selected with cpselect. To use cross-correlation, features
in the two images must be at the same scale and have the same orientation.
They cannot be rotated relative to each other. Because the Concord image is
rotated in relation to the base image, cpcorr cannot tune the control points.
See “Using Correlation to Improve Control Points” on page 7-31 for more
information.

Step 5: Specify the Type of Transformation and Infer Its
Parameters

In this step, you pass the control points to the cp2tform function that
determines the parameters of the transformation needed to bring the image
into alignment. cp2tform is a data-fitting function that determines the
transformation based on the geometric relationship of the control points.
cp2tform returns the parameters in a geometric transformation structure,
called a TFORM structure.

When you use cp2tform, you must specify the type of transformation you
want to perform. The cp2tform function can infer the parameters for five
types of transformations. You must choose which transformation will correct
the type of distortion present in the input image. See “Transformation Types”
on page 7-13 for more information. Images can contain more than one type
of distortion.

The predominant distortion in the aerial image of West Concord (the input

image) results from the camera perspective. Ignoring terrain relief, which is
minor in this area, image registration can correct for camera perspective

7-10



Registering an Image

distortion by using a projective transformation. The projective transformation
also rotates the image into alignment with the map coordinate system
underlying the base digital orthophoto image. (Given sufficient information
about the terrain and camera, you could correct these other distortions at
the same time by creating a composite transformation with maketform. See
“Performing General 2-D Spatial Transformations” on page 6-8 for more
information.)

mytform = cp2tform(input_points, base_points, 'projective');

Step 6: Transform the Unregistered Image

As the final step in image registration, transform the input image to bring
it into alignment with the base image. You use imtransform to perform the
transformation, passing it the input image and the TFORM structure, which
defines the transformation. imtransform returns the transformed image.
For more information about using imtransform, see Chapter 6, “Spatial
Transformations”

registered = imtransform(unregistered, mytform);
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The following figure shows the transformed image transparently overlaid on
the base image to show the results of the registration. (To see how this is
done, see “Example: Performing Image Registration” on page 6-22.
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Transformation Types

The cp2tform function can infer the parameters for the following types of
transformations, listed in order of complexity.

e 'linear conformal'

e ‘'affine’

® 'projective’

e 'polynomial' (Order 2, 3, or 4)
® 'piecewise linear'

e 'lwm'

The first four transformations, 'linear conformal', 'affine’,
'projective’', and 'polynomial' are global transformations. In these
transformations, a single mathematical expression applies to an entire
image. The last two transformations, 'piecewise linear' and 'lwm' (local
weighted mean), are local transformations. In these transformations, different
mathematical expressions apply to different regions within an image. When
exploring how different transformations affect the images you are working
with, try the global transformations first. If these transformations are not
satisfactory, try the local transformations: the piecewise linear transformation
first, and then the local weighted mean transformation.

Your choice of transformation type affects the number of control point pairs
you need to select. For example, a linear conformal transformation requires at
least two control point pairs. A polynomial transformation of order 4 requires
15 control point pairs. For more information about these transformation
types, and the special syntaxes they require, see cpselect.
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Selecting Control Points

7-14

In this section...

“Specifying Control Points Using the Control Point Selection Tool” on page
7-14

“Starting the Control Point Selection Tool” on page 7-16
“Using Navigation Tools to Explore the Images” on page 7-17
“Specifying Matching Control Point Pairs” on page 7-21

“Exporting Control Points to the Workspace” on page 7-28

Specifying Control Points Using the Control Point
Selection Tool

To specify control points in a pair of images you want to register, use the
Control Point Selection Tool, cpselect. The tool displays the image you want
to register, called the input image, next to the image you want to compare it
to, called the base image or reference image.

Specifying control points is a four-step process:

1 Start the tool, specifying the input image and the base image.

2 Use navigation aids to explore the image, looking for visual elements that
you can identify in both images. cpselect provides many ways to navigate
around the image, panning and zooming to view areas of the image in
more detail.

3 Specify matching control point pairs in the input image and the base image.

4 Save the control points in the MATLAB® workspace.

The following figure shows the default appearance of the tool when you first
start it.
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Starting the Control Point Selection Tool

To use the Control Point Selection Tool, enter the cpselect command at the
MATLAB prompt. As arguments, specify the image you want to register (the
input image), and the image you want to compare it to (the base image).

For simplicity, this section uses the same image as the input and the base
image. To walk through an example of an actual registration, see “Registering
an Image” on page 7-2.

moon_base = imread('moon.tif');
moon_input = moon_base;
cpselect(moon_input, moon_base);

The cpselect command has other optional arguments. For example, you can
restart a control point selection session by including a cpstruct structure
as the third argument. For more information about restarting sessions, see
“Exporting Control Points to the Workspace” on page 7-28. For complete
details, see the cpselect reference page.

When the Control Point Selection Tool starts, it contains three primary
components:

¢ Details windows—The two windows displayed at the top of the tool are
called the Detail windows. These windows show a close-up view of a portion
of the images you are working with. The input image is on the left and the
base image is on the right.

* Overview windows—The two windows displayed at the bottom of the tool
are called the Overview windows. These windows show the images in their
entirety, at the largest scale that fits the window. The input image is on
the left and the base image is on the right. You can control whether the
Overview window appears by using the View menu.

¢ Details rectangle—Superimposed on the images displayed in the two
Overview windows is a rectangle, called the Detail rectangle. This
rectangle controls the part of the image that is visible in the Detail window.
By default, at startup, the detail rectangle covers one quarter of the entire
image and is positioned over the center of the image. You can move the
Detail rectangle to change the portion of the image displayed in the Detail
windows.
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The following figure shows these components of the Control Point Selection
Tool.

Base

Overview

windows
Input
Base

Detail

rectangles
Input
Base

Using Navigation Tools to Explore the Images

To find visual elements that are common to both images, you might want to
change the section of the image displayed in the detail view or zoom in on a
part of the image to view it in more detail. The following sections describe the
different ways to change your view of the images:

“Using Scroll Bars to View Other Parts of an Image” on page 7-18
“Using the Detail Rectangle to Change the View” on page 7-18
“Panning the Image Displayed in the Detail Window” on page 7-19

“Zooming In and Out on an Image” on page 7-19
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® “Specifying the Magnification of the Images” on page 7-20

® “Locking the Relative Magnification of the Input and Base Images” on
page 7-21

Using Scroll Bars to View Other Parts of an Image

To view parts of an image that are not visible in the Detail or Overview
windows, use the scroll bars provided for each window.

As you scroll the image in the Detail window, note how the Detail rectangle
moves over the image in the Overview window. The position of the Detail
rectangle always shows the portion of the image in the Detail window.

Using the Detail Rectangle to Change the View

To get a closer view of any part of the image, move the Detail rectangle in the
Overview window over that section of the image. cpselect displays that
section of the image in the Detail window at a higher magnification than
the Overview window.

To move the detail rectangle,
1 Move the pointer into the Detail rectangle. The cursor changes to the fleur
shape, \=ad]

2 Press and hold the mouse button to drag the detail rectangle anywhere
on the image.

Note As you move the Detail rectangle over the image in the Overview
window, the view of the image displayed in the Detail window changes.
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Panning the Image Displayed in the Detail Window

To change the section of the image displayed in the Detail window, use the
pan tool to move the image in the window.

To use the pan tool,

1 Click the Pan button |ﬂ| in the Control Point Selection Tool toolbar or
select Pan from the Tools menu.

2 Move the pointer over the image in the Detail window. The cursor changes

to the hand shape, éfr? .

3 Press and hold the mouse button. The cursor changes to a closed fist shape,

7. Use the mouse to move the image in the Detail window.

Note As you move the image in the Detail window, the Detail rectangle in
the Overview window moves.

Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, you can zoom in or zoom out on the images displayed.
(You can also zoom in or out on an image by changing the magnification.
See “Specifying the Magnification of the Images” on page 7-20 for more
information.)

To zoom in or zoom out on the base or input images,

1 Click the appropriate magnifying glass button on the Control Point
Selection Tool toolbar or select Zoom In or Zoom Out from the Tools menu.

Zoom in Zoom out

s
H R
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2 Move the pointer over the image in the Detail window that you want to
zoom in or out on. The cursor changes to the appropriate magnifying glass

shape, such as @{ Position the cursor over a location in the image and
click the mouse. With each click, cpselect changes the magnification of
the image by a preset amount. (See“Specifying the Magnification of the
Images” on page 7-20 for a list of some of these magnifications.) cpselect
centers the new view of the image on the spot where you clicked.

Another way to use the Zoom tool to zoom in on an image is to position the
cursor over a location in the image and, while pressing and holding the
mouse button, draw a rectangle defining the area you want to zoom in on.
cpselect magnifies the image so that the chosen section fills the Detail
window. cpselect resizes the detail rectangle in the Overview window
as well.

The size of the Detail rectangle in the Overview window changes as you
zoom in or out on the image in the Detail window.

To keep the relative magnifications of the base and input images
synchronized as you zoom in or out, click the Lock ratio check box. See
“Locking the Relative Magnification of the Input and Base Images” on page
7-21 for more information.

Specifying the Magnification of the Images

To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, use the magnification edit box. (You can also use the Zoom
buttons to enlarge or shrink an image. See “Zooming In and Out on an Image”
on page 7-19 for more information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to
change. The cursor changes to the text entry cursor.

2 Type a new value in the magnification edit box and press Enter, or click
the menu associated with the edit box and choose from a list of preset
magnifications. cpselect changes the magnification of the image and
displays the new view in the appropriate window. To keep the relative
magnifications of the base and input images synchronized as you change
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the magnification, click the Lock ratio check box. See “Locking the
Relative Magnification of the Input and Base Images” on page 7-21 for
more information.

Magnification edit box Magnification menu

:

LI [ Lock ratio || 109%
Fit: to windiow
33%
S0%
67

Impust Dretail: moon_ingpt LI Baze Detail: moon_baze

Locking the Relative Magnification of the Input and Base
Images

To keep the relative magnification of the input and base images automatically
synchronized in the Detail windows, click the Lock Ratio check box.

When the Lock Ratio check box is selected, cpselect changes the
magnification of both the input and base images when you zoom in or out on
either one of the images or specify a magnification value for either of the
images.

Lock magnification ratio check box

| 100% R ||7 e |1|:n:|% R4

Specifying Matching Control Point Pairs

The primary function of the Control Point Selection Tool is to enable you
to pick control points in the image to be registered (the input image) and
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the image to which you are comparing it (the base image). When you start
cpselect, point selection is enabled, by default.

You specify control points by pointing and clicking in the input and base
images, in either the Detail or the Overview windows. Each point you specify
in the input image must have a match in the base image. The following
sections describe the ways you can use the Control Point Selection Tool to
choose control point pairs:

¢ “Picking Control Point Pairs Manually” on page 7-22
e “Using Control Point Prediction” on page 7-24

e “Moving Control Points” on page 7-27
¢ “Deleting Control Points” on page 7-27

Picking Control Point Pairs Manually
To specify a pair of control points in your images,

1 Click the Control Point Selection button %+ in the Control Point
Selection Tool toolbar or select Add Points from the Tools menu. (Control
point selection mode is active by default.) The cursor changes to a

crosshairs shape —I_

2 Position the cursor over a feature you have visually selected in any of the
images displayed and click the mouse button. cpselect places a control

point symbol, 1, at the position you specified, in both the Detail window
and the corresponding Overview window. cpselect numbers the points as
you select them. The appearance of the control point symbol indicates its
current state. The circle around the point indicates that it is the currently
selected point. The number identifies control point pairs.

Note Depending on where in the image you pick control points, the symbol
for the point might be visible in the Overview window, but not in the Detail
window.
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3 You can select another point in the same image or you can move to the
corresponding image and create a match for the point. To create the match
for this control point, position the cursor over the same feature in the
corresponding Detail or Overview window and click the mouse button.
cpselect places a control point symbol at the position you specified, in
both the Detail and Overview windows. You can work in either direction:
picking control points in either of the Detail windows, input or base, or in
either of the Overview windows, input or base.

To match an unmatched control point, select it, and then pick a point in
the corresponding window. You can move or delete control points after you

create them.

The following figure illustrates control points in several states.
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Selected,
unmatched
point

Matched pair of points

Using Control Point Prediction

Instead of picking matching control points yourself, you can let the Control
Point Selection Tool estimate the match for the control points you specify,
automatically. The Control Point Selection Tool determines the position of the
matching control point based on the geometric relationship of the previously
selected control points, not on any feature of the underlying images.

To illustrate point prediction, this figure shows four control points selected
in the input image, where the points form the four corners of a square.
(The control point selections in the figure do not attempt to identify any
landmarks in the image.) The figure shows the picking of a fourth point, in
the left window, and the corresponding predicted point in the right window.
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Note how the Control Point Selection Tool places the predicted point at the
same location relative to the other control points, forming the bottom right
corner of the square.

Predicted point
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Note By default, the Control Point Selection Tool does not include predicted
points in the set of valid control points returned in input_points or

base points. To include predicted points, you must accept them by selecting
the points and fine-tuning their position with the cursor. When you move

a predicted point, the Control Point Selection Tool changes the symbol to
indicate that it has changed to a standard control point. For more information,
see “Moving Control Points” on page 7-27.

To use control point prediction,

1 Click the Control Point Prediction button ¢$ .

Note Because the Control Point Selection Tool predicts control point
locations based on the locations of the previous control points, you cannot
use point prediction until you have a minimum of two pairs of matched
points. Until this minimum is met, the Control Point Prediction button
is disabled.

2 Position the cursor anywhere in any of the images displayed. The cursor

changes to the crosshairs shape, —|_ .

You can pick control points in either of the Detail windows, input or base,
or in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image or base-to-input image.

3 Click either mouse button. The Control Point Selection Tool places a control
point symbol at the position you specified and places another control point
symbol for a matching point in all the other windows. The symbol for the

P

predicted point contains the letter P, # indicating that it’s a predicted
control point,

4 To accept a predicted point, select it with the cursor and move it. The
Control Point Selection Tool removes the P from the point.
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Moving Control Points
To move a control point,

1 Click the Control Point Selection button + .

2 Position the cursor over the control point you want to move. The cursor

i

changes to the fleur shape, o

3 Press and hold the mouse button and drag the control point. The state of
the control point changes to selected when you move it.

If you move a predicted control point, the state of the control point changes to
a regular (nonpredicted) control point.

Deleting Control Points
To delete a control point, and its matching point, if one exists

1 Click the Control Point Selection button '¢‘

2 Click the control point you want to delete. Its state changes to selected. If
the control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:

® Pressing the Backspace key
® Pressing the Delete key
® Choosing one of the delete options from the Edit menu
Using this menu you can delete individual points or pairs of matched

points, in the input or base images.

Delete Ackive Pair
Delete Active Input Point
Delete Active Base Paink
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Exporting Control Points to the Workspace

After you specify control point pairs, you must save them in the MATLAB
workspace to make them available for the next step in image registration,
processing by cp2tform.

To save control points to the MATLAB workspace,

1 Select File on the Control Point Selection Tool menu bar.

2 Choose the Export Points to Workspace option. The Control Point
Selection Tool displays this dialog box:

=} Export Points to Workspa =10 x|

[+ Input poirts of valid peirs 'I‘IFILI‘tJCIDiI'ItS

[+ Basze poirts of valid pairs 'GaSEJ:-Dints

[ Structure with all points Il:pstruct

OK I Canu:ell

By default, the Control Point Selection Tool saves the x-coordinates and
y-coordinates that specify the locations of the control points you selected

in two arrays named input_points and base _points, although you can
specify other names. These are n-by-2 arrays, where n is the number of valid
control point pairs you selected. This example shows the input_points array
containing four pairs of control points. The values in the left column represent
the x-coordinates; the values in the right column represent the y-coordinates.

input_points =

215.6667 262.3333
225.7778 311.3333
156.5556 340.1111
270.8889 368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to
save your control points.
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Saving Your Control Point Selection Session

To save the current state of the Control Point Selection Tool, choose the
Export Points to Workspace option from the File menu. In the Export
Points to Workspace dialog box, select the Structure with all points
check box.

<} Export Points to Workspa O] =|

[ Imput points of valid pairs 'npuu:ucuints

[ Baze poirts of valid pairs 'GaSEJ:-Dints

[ Structure with all points l:ps‘truct

0K I Canu:ell

This option saves the positions of all the control points you specified and their
current states in a cpstruct structure.

cpstruct =

inputPoints: [4x2 double]
basePoints: [4x2 double]
inputBasePairs: [4x2 double]
ids: [4x1 double]
inputIdPairs: [4x2 double]
baseIdPairs: [4x2 double]
isInputPredicted: [4x1 double]
isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the
point where you left off.

This option is useful if you are picking many points over a long time and want
to preserve unmatched and predicted points when you resume work. The
Control Point Selection Tool does not include unmatched and predicted points
in the input_points and base points arrays.
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To extract the arrays of valid control point coordinates from a cpstruct, use
the cpstruct2pairs function.
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Using Correlation to Improve Control Points

You might want to fine-tune the control points you selected using cpselect.
Using cross-correlation, you can sometimes improve the points you selected
by eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the input and base
images, along with the images themselves, to the cpcorr function.

input_pts_adj= cpcorr(input_points, base_points, input, base);

The cpcorr function defines 11-by-11 regions around each control point in the
input image and around the matching control point in the base image, and
then calculates the correlation between the values at each pixel in the region.
Next, the cpcorr function looks for the position with the highest correlation
value and uses this as the optimal position of the control point. The cpcorr
function only moves control points up to 4 pixels based on the results of the
cross-correlation.

Note Features in the two images must be at the same scale and have the
same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values
in input_points unmodified.
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Designing and
Implementing 2-D Linear
Filters for Image Data

The Image Processing Toolbox™ software provides a number of functions for
designing and implementing two-dimensional linear filters for image data.
This chapter describes these functions and how to use them effectively.

Designing and Implementing Linear Provides an explanation of linear

Filters in the Spatial Domain (p. 8-2) filtering and how it is implemented
in the toolbox. This topic describes
filtering in terms of the spatial
domain, and is accessible to anyone
doing image processing.

Designing Linear Filters in the Discusses designing two-dimensional

Frequency Domain (p. 8-15) finite impulse response (FIR) filters.
This section assumes you are
familiar with working in the
frequency domain.
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Designing and Implementing Linear Filters in the Spatial
Domain

In this section...

“Overview” on page 8-2
“Convolution” on page 8-2
“Correlation” on page 8-4

“Performing Linear Filtering of Images Using imfilter” on page 8-5

“Filtering an Image with Predefined Filter Types” on page 8-13

For information about designing linear filters in the frequency domain, see
“Designing Linear Filters in the Frequency Domain” on page 8-15.

Overview

Filtering is a technique for modifying or enhancing an image. For example,
you can filter an image to emphasize certain features or remove other features.
Image processing operations implemented with filtering include smoothing,
sharpening, and edge enhancement. Filtering is a neighborhood operation,

in which the value of any given pixel in the output image is determined by
applying some algorithm to the values of the pixels in the neighborhood of the
corresponding input pixel. A pixel’s neighborhood is some set of pixels, defined
by their locations relative to that pixel. (See Chapter 15, “Neighborhood

and Block Operations” for a general discussion of neighborhood operations.)
Linear filtering is filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood.

Convolution

Linear filtering of an image is accomplished through an operation called
convolution. Convolution is a neighborhood operation in which each output
pixel is the weighted sum of neighboring input pixels. The matrix of weights
is called the convolution kernel, also known as the filter. A convolution kernel
is a correlation kernel that has been rotated 180 degrees.

For example, suppose the image is
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A= [17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9]

and the convolution kernel is

h=1[8 1 6
3 5 7
4 9 2]

The following figure shows how to compute the (2,4) output pixel using these
steps:

1 Rotate the convolution kernel 180 degrees about its center element.

2 Slide the center element of the convolution kernel so that it lies on top of
the (2,4) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A
underneath.

4 Sum the individual products from step 3.
Hence the (2,4) output pixel is

1-2+8-9+15-44+7-7T+14-5+16-3+13-8+20.-1+22.-8=575
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Computing the (2,4) Output of Convolution

Correlation

The operation called correlation is closely related to convolution. In
correlation, the value of an output pixel is also computed as a weighted sum
of neighboring pixels. The difference is that the matrix of weights, in this
case called the correlation kernel, is not rotated during the computation. The
Image Processing Toolbox™ filter design functions return correlation kernels.

The following figure shows how to compute the (2,4) output pixel of the
correlation of A, assuming h is a correlation kernel instead of a convolution
kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of
the (2,4) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.

3 Sum the individual products from step 3.
The (2,4) output pixel from the correlation is

1-8+8-1+15-8+7-3+214 - 5+168 - 7+13 - 4+820 . 9+22.2 =585
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Computing the (2,4) Output of Correlation

Performing Linear Filtering of Images Using imfilter

Filtering of images, either by correlation or convolution, can be performed
using the toolbox function imfilter. This example filters an image with
a 5-by-5 filter containing equal weights. Such a filter is often called an

averaging filter.

I
h

imread('coins.png');
ones(5,5) / 25;
I2 = imfilter(I,h);

imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')
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Original Image Filtered Image

Data Types

The imfilter function handles data types similarly to the way the image
arithmetic functions do, as described in “Image Arithmetic Saturation Rules”
on page 2-27. The output image has the same data type, or numeric class, as
the input image. The imfilter function computes the value of each output
pixel using double-precision, floating-point arithmetic. If the result exceeds
the range of the data type, the imfilter function truncates the result to
that data type’s allowed range. If it is an integer data type, imfilter rounds
fractional values.

Because of the truncation behavior, you might sometimes want to consider
converting your image to a different data type before calling imfilter. In
this example, the output of imfilter has negative values when the input is
of class double.

A = magic(5)

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
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imfilter(A,h)

ans =
24
5
6
12
18

-16
-16
9
9
14

-16
9
14
9
-16

14
9

9
-16
-16

-8
-14
-20
-21

-2

Notice that the result has negative values. Now suppose A is of class uints,

instead of double.

A = uint8(magic(5
imfilter(A,h)

ans =

24
5
6

12

18

» O © OO

))

O O © O >

O OO oo

Since the input to imfilter is of class uint8, the output also is of class
uint8, and so the negative values are truncated to 0. In such cases, it might
be appropriate to convert the image to another type, such as a signed integer
type, single, or double, before calling imfilter.

Correlation and Convolution Options

The imfilter function can perform filtering using either correlation or
convolution. It uses correlation by default, because the filter design functions,
described in “Designing Linear Filters in the Frequency Domain” on page
8-15, and the fspecial function, described in “Filtering an Image with
Predefined Filter Types” on page 8-13, produce correlation kernels.

8-7
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However, if you want to perform filtering using convolution instead, you can
pass the string 'conv' as an optional input argument to imfilter. For

example:
A = magic(5);
h=1[-101]

imfilter(A,h) % filter using correlation

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20
12 9 9 -16 -21
18 14 -16 -16 -2

\O

imfilter(A,h,'conv') s filter using convolution

ans =
-24 16 16 -14 8
-5 16 -9 -9 14
-6 -9 -14 -9 20
12 -9 -9 16 21
-18  -14 16 16 2

Boundary Padding Options

When computing an output pixel at the boundary of an image, a portion of
the convolution or correlation kernel is usually off the edge of the image,
as illustrated in the following figure.
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When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by
assuming that they are 0. This is called zero padding and is illustrated in
the following figure.

Dutside pixek are
asumed ta be (.
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Zero Padding of Outside Pixels
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When you filter an image, zero padding can result in a dark band around the
edge of the image, as shown in this example.

I = imread('eight.tif');

h ones(5,5) / 25;

I2 = imfilter(I,h);

imshow(I), title('Original Image');

figure, imshow(I2), title('Filtered Image with Black Border')

Original Image Filtered Image with Black Border

To eliminate the zero-padding artifacts around the edge of the image,
imfilter offers an alternative boundary padding method called border
replication. In border replication, the value of any pixel outside the image
is determined by replicating the value from the nearest border pixel. This
is illustrated in the following figure.

8-10
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Replicated Boundary Pixels

To filter using border replication, pass the additional optional argument
'replicate’ to imfilter.

I3 = imfilter(I,h, 'replicate');

figure, imshow(I3);
title('Filtered Image with Border Replication')

Filtered Image with Border Replication

8-11
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The imfilter function supports other boundary padding options, such as
‘circular' and 'symmetric'. See the reference page for imfilter for details.

Multidimensional Filtering

The imfilter function can handle both multidimensional images and
multidimensional filters. A convenient property of filtering is that filtering
a three-dimensional image with a two-dimensional filter is equivalent to
filtering each plane of the three-dimensional image individually with the
same two-dimensional filter. This example shows how easy it is to filter each
color plane of a truecolor image with the same filter:

1 Read in an RGB image and display it.

rgb = imread('peppers.png');
imshow(rgb);

2 Filter the image and display it.

h = ones(5,5)/25;
rgb2 = imfilter(rgb,h);
figure, imshow(rgb2)
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Relationship to Other Filtering Functions

MATLAB® has several two-dimensional and multidimensional filtering
functions. The function filter2 performs two-dimensional correlation, conv2
performs two-dimensional convolution, and convn performs multidimensional
convolution. Each of these filtering functions always converts the input to
double, and the output is always double. These other filtering functions
always assume the input is zero padded, and they do not support other
padding options.

In contrast, the imfilter function does not convert input images to double.
The imfilter function also offers a flexible set of boundary padding options,
as described in “Boundary Padding Options” on page 8-8.

Filtering an Image with Predefined Filter Types

The fspecial function produces several kinds of predefined filters, in the form
of correlation kernels. After creating a filter with fspecial, you can apply it
directly to your image data using imfilter. This example illustrates applying
an unsharp masking filter to a grayscale image. The unsharp masking filter
has the effect of making edges and fine detail in the image more crisp.

8-13
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I = imread('moon.tif');

h = fspecial('unsharp');

I2 = imfilter(I,h);

imshow(I), title('Original Image')

figure, imshow(I2), title('Filtered Image')

Imoge Courtesy of Michael Myers
Original Image Filtered Image

8-14
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Designing Linear Filters in the Frequency Domain

In this section...
“FIR Filters” on page 8-16

“Frequency Transformation Method” on page 8-16

“Frequency Sampling Method” on page 8-18

“Windowing Method” on page 8-19

“Creating the Desired Frequency Response Matrix” on page 8-21

“Computing the Frequency Response of a Filter” on page 8-22

For information about designing linear filters in the spatial domain, see
“Designing and Implementing Linear Filters in the Spatial Domain” on page
8-2.

Note Most of the design methods described in this section work by creating a
two-dimensional filter from a one-dimensional filter or window created using
Signal Processing Toolbox functions. Although this toolbox is not required,
you might find it difficult to design filters if you do not have the Signal
Processing Toolbox software.

8-15
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FIR Filters

The Image Processing Toolbox™ software supports one class of linear filter:
the two-dimensional finite impulse response (FIR) filter. FIR filters have a
finite extent to a single point, or impulse. All the Image Processing Toolbox
filter design functions return FIR filters.

FIR filters have several characteristics that make them ideal for image
processing in the MATLAB® environment:

¢ FIR filters are easy to represent as matrices of coefficients.

¢ Two-dimensional FIR filters are natural extensions of one-dimensional
FIR filters.

® There are several well-known, reliable methods for FIR filter design.
¢ FIR filters are easy to implement.

¢ FIR filters can be designed to have linear phase, which helps prevent
distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as
suitable for image processing applications. It lacks the inherent stability and
ease of design and implementation of the FIR filter. Therefore, this toolbox
does not provide IIR filter support.

Frequency Transformation Method

The frequency transformation method transforms a one-dimensional FIR
filter into a two-dimensional FIR filter. The frequency transformation
method preserves most of the characteristics of the one-dimensional filter,
particularly the transition bandwidth and ripple characteristics. This method
uses a transformation matrix, a set of elements that defines the frequency
transformation.

The toolbox function ftrans2 implements the frequency transformation
method. This function’s default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal
and Image Processing, 1990, for details.)
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The frequency transformation method generally produces very good results,
as it is easier to design a one-dimensional filter with particular characteristics
than a corresponding two-dimensional filter. For instance, the next example
designs an optimal equiripple one-dimensional FIR filter and uses it to
create a two-dimensional filter with similar characteristics. The shape of the
one-dimensional frequency response is clearly evident in the two-dimensional
response

b = remez(10,[0 0.4 0.6 1],[1 1 0 0]);
h = ftrans2(b);

[H,w] = freqz(b,1,64, 'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))

figure, freqz2(h,[32 32])

1.4

1.2} 1
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One-Dimensional Frequency Response

8-17



8 Designing and Implementing 2-D Linear Filters for Image Data

8-18

15

Magnitude

=S

A\ SO us

SRS
S S

Corresponding Two-Dimensional Frequency Response

Frequency Sampling Method

The frequency sampling method creates a filter based on a desired frequency
response. Given a matrix of points that define the shape of the frequency
response, this method creates a filter whose frequency response passes
through those points. Frequency sampling places no constraints on the
behavior of the frequency response between the given points; usually, the
response ripples in these areas. (Ripples are oscillations around a constant
value. The frequency response of a practical filter often has ripples where the
frequency response of an ideal filter is flat.)

The toolbox function fsamp2 implements frequency sampling design for
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency
response that passes through the points in the input matrix Hd. The example
below creates an 11-by-11 filter using fsamp2 and plots the frequency response
of the resulting filter. (The freqz2 function in this example calculates the
two-dimensional frequency response of a filter. See “Computing the Frequency
Response of a Filter” on page 8-22 for more information.)
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Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired
frequency response. These ripples are a fundamental problem with the
frequency sampling design method. They occur wherever there are sharp
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter.
However, a larger filter does not reduce the height of the ripples, and requires
more computation time for filtering. To achieve a smoother approximation to
the desired frequency response, consider using the frequency transformation
method or the windowing method.

Windowing Method

The windowing method involves multiplying the ideal impulse response
with a window function to generate a corresponding filter, which tapers the
ideal impulse response. Like the frequency sampling method, the windowing
method produces a filter whose frequency response approximates a desired
frequency response. The windowing method, however, tends to produce better
results than the frequency sampling method.

8-19
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The toolbox provides two functions for window-based filter design, fwind1 and
fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional
window that it creates from one or two one-dimensional windows that

you specify. fwind2 designs a two-dimensional filter by using a specified
two-dimensional window directly.

fwind1 supports two different methods for making the two-dimensional
windows it uses:

® Transforming a single one-dimensional window to create a two-dimensional
window that is nearly circularly symmetric, by using a process similar to
rotation

* Creating a rectangular, separable window from two one-dimensional
windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired
frequency response Hd. The example uses the Signal Processing Toolbox
hamming function to create a one-dimensional window, which fwind1 then
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1 (Hd,hamming(11));

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)
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Creating the Desired Frequency Response Matrix

The filter design functions fsamp2, fwind2, and fwind2 all create filters based
on a desired frequency response magnitude matrix. Frequency response is a
mathematical function describing the gain of a filter in response to different
input frequencies.

You can create an appropriate desired frequency response matrix using the
fregspace function. freqspace returns correct, evenly spaced frequency
values for any size response. If you create a desired frequency response
matrix using frequency points other than those returned by freqspace, you
might get unexpected results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff
at 0.5, use

[f1,f2] = freqspace(25, 'meshgrid');

Hd = zeros(25,25); d = sqrt(f1.72 + f2.72) < 0.5;
Hd(d) = 1;

mesh (f1,f2,Hd)

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1,
and fwind2 are real. This result is desirable for most image processing
applications. To achieve this in general, the desired frequency response
should be symmetric about the frequency origin (f1 = 0, f2 = 0).
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Computing the Frequency Response of a Filter

The freqz2 function computes the frequency response for a two-dimensional
filter. With no output arguments, freqz2 creates a mesh plot of the frequency
response. For example, consider this FIR filter,

h =[0.1667 0.6667 0.1667
0.6667 -3.3333 0.6667
0.1667 0.6667 0.1667];

This command computes and displays the 64-by-64 point frequency response
of h.

freqz2(h)

Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1
and f2, use output arguments

[H,f1,f2] = freqz2(h);
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freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds
to half the sampling frequency, or 1T radians.

For a simple m-by-n response, as shown above, freqz2 uses the
two-dimensional fast Fourier transform function fft2. You can also specify
vectors of arbitrary frequency points, but in this case freqz2 uses a slower
algorithm.

See “Fourier Transform” on page 9-3 for more information about the fast
Fourier transform and its application to linear filtering and filter design.

8-23
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The usual mathematical representation of an image is a function of two
spatial variables: fix,¥). The value of the function at a particular location
(2, ¥) represents the intensity of the image at that point. This is called the
spatial domain. The term transform refers to an alternative mathematical
representation of an image. For example, the Fourier transform is a
representation of an image as a sum of complex exponentials of varying
magnitudes, frequencies, and phases. This is called the frequency domain.
Transforms are useful for a wide range of purposes, including convolution,
enhancement, feature detection, and compression.

This chapter defines several important transforms and shows examples of
their application to image processing.

Fourier Transform (p. 9-3) Defines the Fourier transform and
some of its applications in image
processing

Discrete Cosine Transform (p. 9-17)  Describes the discrete cosine
transform (DCT) of an image and its
application, particularly in image
compression

Radon Transform (p. 9-21) Describes how the radon function

computes projections of an image
matrix along specified directions



9 Transforms

The Inverse Radon Transformation
(p. 9-31)

Fan-Beam Projection Data (p. 9-38)

Describes how the iradon function
reconstructs images from projection
data

Describes how the fanbeam function
computes projections of an image
matrix along paths that radiate from
a specific source
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Fourier Transform

In this section...

“Definition of Fourier Transform” on page 9-3

“Discrete Fourier Transform” on page 9-8

“Applications of the Fourier Transform” on page 9-11

Definition of Fourier Transform

The Fourier transform is a representation of an image as a sum of complex
exponentials of varying magnitudes, frequencies, and phases. The Fourier
transform plays a critical role in a broad range of image processing
applications, including enhancement, analysis, restoration, and compression.

If fim,n)is a function of two discrete spatial variables m and n, then the
two-dimensional Fourier transform of f{m,n)is defined by the relationship

Fi Wy, Wy ) = E E fim,n Je—jm,mf—jmﬂn

M ==00 1 = —00

The variables w, and w, are frequency variables; their units are radians

per sample. Flwy, o) is often called the frequency-domain representation
of fim,n). Flwy, wy) is a complex-valued function that is periodic both in
“iand “2, with period 2. Because of the periodicity, usually only the range
- Wy, Wy =Tig displayed. Note that Fi(, 0} is the sum of all the values of
fim, n). For this reason, F(0, 1) is often called the constant component or DC
component of the Fourier transform. (DC stands for direct current; it is an
electrical engineering term that refers to a constant-voltage power source, as
opposed to a power source whose voltage varies sinusoidally.)

The inverse of a transform is an operation that when performed on a
transformed image produces the original image. The inverse two-dimensional
Fourier transform is given by

Junm junn
_ € duwy dug

e T
fim,n) = %J‘ -[ Flwq, wy)e
4:"-. u.'l] - ';.L'l!=—|T
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Roughly speaking, this equation means that f (. 1) can be represented as a
sum of an infinite number of complex exponentials (sinusoids) with different
frequencies. The magnitude and phase of the contribution at the frequencies
(W, Wo) are given by ¥ (@1 @),

Visualizing the Fourier Transform

To illustrate, consider a function f (7. 1) that equals 1 within a rectangular
region and 0 everywhere else. To simplify the diagram, f (7. ) is shown as a
continuous function, even though the variables m and n are discrete.

n

fim,n)

Y

n

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier

transform, |F[ w1- “’EJL of the rectangular function shown in the preceding
figure. The mesh plot of the magnitude is a common way to visualize the
Fourier transform.
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Magnitude Image of a Rectangular Function

The peak at the center of the plot is F{0, 07, which is the sum of all the values
in fim.n) The plot also shows that Fiw;. @) has more energy at high
horizontal frequencies than at high vertical frequencies. This reflects the fact
that horizontal cross sections of /' (7. 1) are narrow pulses, while vertical
cross sections are broad pulses. Narrow pulses have more high-frequency
content than broad pulses.

Another common way to visualize the Fourier transform is to display

log|F' (w3, wg)| a5 an image, as shown.

9-5
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wl

Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in
regions where Fiw;. w5 is very close to 0.

Examples of the Fourier transform for other simple shapes are shown below.
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Discrete Fourier Transform

Working with the Fourier transform on a computer usually involves a form
of the transform known as the discrete Fourier transform (DFT). A discrete
transform is a transform whose input and output values are discrete samples,
making it convenient for computer manipulation. There are two principal
reasons for using this form of the transform:

¢ The input and output of the DFT are both discrete, which makes it
convenient for computer manipulations.

e There is a fast algorithm for computing the DFT known as the fast Fourier
transform (FFT).

The DFT is usually defined for a discrete function f (7. ) that is nonzero only
over the finite region 0 =m <M -1 and 0 <n < N-1. The two-dimensional
M-by-N DFT and inverse M-by-N DFT relationships are given by

M-1 N-1
— 2] —j2asN =D,1,...,M—1
Fip.q) = E z fim,n)e JfETfH]pn!f JI2n/Nign r
m=0 n=10 q= D,l,...,N—l
M-1 N-1
2 Mipm 32z Nign m=01,... M-1
(m.n) = Fip.giwe’ €
! ! NZD Eﬂ i n=01..N-1
F: q:

The values F(P- @) are the DFT coefficients of (M. 1) The zero-frequency
coefficient, F(0, DJ, is often called the "DC component." DC is an electrical
engineering term that stands for direct current. (Note that matrix indices in
MATLAB® always start at 1 rather than 0; therefore, the matrix elements
f(1,1) and F(1,1) correspond to the mathematical quantities £(0.0) and
Fi0.0) respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier
transform algorithm for computing the one-dimensional DFT, two-dimensional
DFT, and N-dimensional DF'T, respectively. The functions ifft, ifft2, and
ifftn compute the inverse DFT.
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Relationship to the Fourier Transform
The DFT coefficients (P-4 are samples of the Fourier transform Flwy, wg),

p=01 ... M-1
g=01..N-1

Fip.g) = Flw;. wy)
B-4a 1 e wy = Eaps M

we = 2ag N

Example

1 Construct a matrix f that is similar to the function f(m,n) in the example
in “Definition of Fourier Transform” on page 9-3. Remember that f(m,n)
is equal to 1 within the rectangular region and 0 elsewhere. Use a binary
image to represent f(m,n).

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f, 'InitialMagnification','fit")

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5]

, 'InitialMagnification','fit'); colormap(jet); colorba
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Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing
the Fourier Transform” on page 9-4. First, the sampling of the Fourier
transform is much coarser. Second, the zero-frequency coefficient is
displayed in the upper left corner instead of the traditional location in
the center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f
when computing its DFT. The zero padding and DFT computation can be
performed in a single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar
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Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper
left corner rather than the center. You can fix this problem by using
the function fftshift, which swaps the quadrants of F so that the
zero-frequency coefficient is in the center.

F = fft2(f,256,256);F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier
Transform” on page 9-4.

Applications of the Fourier Transform

This section presents a few of the many image processing-related applications
of the Fourier transform.

Frequency Response of Linear Filters

The Fourier transform of the impulse response of a linear filter gives the
frequency response of the filter. The function freqz2 computes and displays
a filter’s frequency response. The frequency response of the Gaussian
convolution kernel shows that this filter passes low frequencies and
attenuates high frequencies.

h = fspecial('gaussian');
freqz2(h)
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Frequency Response of a Gaussian Filter

See Chapter 8, “Designing and Implementing 2-D Linear Filters for Image
Data” for more information about linear filtering, filter design, and frequency
responses.

Fast Convolution

A key property of the Fourier transform is that the multiplication of two
Fourier transforms corresponds to the convolution of the associated spatial
functions. This property, together with the fast Fourier transform, forms the
basis for a fast convolution algorithm.

Note The FFT-based convolution method is most often used for large inputs.
For small inputs it is generally faster to use imfilter.

To illustrate, this example performs the convolution of A and B, where A is an
M-by-N matrix and B is a P-by-Q matrix:
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1 Create two matrices.

A = magic(3);
B ones(3);

2 Zero-pad A and B so that they are at least (M+P-1)-by-(N+Q-1). (Often A
and B are zero-padded to a size that is a power of 2 because fft2 is fastest
for these sizes.) The example pads the matrices to be 8-by-8.

A(8,8) = 0;
B(8,8) = 0;
3 Compute the two-dimensional DFT of A and B using fft2, multiply the

two DFTs together, and compute the inverse two-dimensional DFT of the
result using ifft2

C = ifft2(fft2(A).*fft2(B));

4 Extract the nonzero portion of the result and remove the imaginary part
caused by roundoff error.

C
C

C(1:5,1:5);
real(C)

This example produces the following result.
C =

8.0000 9.0000 15.0000 7.0000 6.0000
11.0000 17.0000 30.0000 19.0000 13.0000
15.0000 30.0000 45.0000 30.0000 15.0000

7.0000 21.0000 30.0000 23.0000 9.0000

4.0000 13.0000 15.0000 11.0000 2.0000

Locating Image Features

The Fourier transform can also be used to perform correlation, which is closely
related to convolution. Correlation can be used to locate features within an
image; in this context correlation is often called template matching.

This example illustrates how to use correlation to locate occurrences of the
letter "a" in an image containing text:
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1 Read in the sample image.

bw = imread('text.png');

2 Create a template for matching by extracting the letter "a" from the image.

a = bw(32:45,88:98);

You can also create the template image by using the interactive version of
imcrop.

The following figure shows both the original image and the template.
imshow (bw) ;

figure, imshow(a);

The term watershed
refers to a ridge that ...
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Image (left) and the Template to Correlate (right)

3 Compute the correlation of the template image with the original image
by rotating the template image by 180° and then using the FFT-based
convolution technique described in “Fast Convolution” on page 9-12.

(Convolution is equivalent to correlation if you rotate the convolution
kernel by 180°.) To match the template to the image, use the fft2 and

ifft2 functions.

C = real (ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));
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Fourier Transform

The following image shows the result of the correlation. Bright peaks in
the image correspond to occurrences of the letter.

figure, imshow(C,[]) % Scale image to appropriate display range.
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Correlated Image
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4 To view the locations of the template in the image, find the maximum pixel
value and then define a threshold value that is less than this maximum.
The locations of these peaks are indicated by the white spots in the
thresholded correlation image. (To make the locations easier to see in this
figure, the thresholded image has been dilated to enlarge the size of the
points.)

max(C(:))

ans =

68.0000
thresh = 60; % Use a threshold that's a little less than max.
figure, imshow(C > thresh)% Display showing pixels over
threshold.

Correlated, Thresholded Image Showing Template Locations
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Discrete Cosine Transform

In this section...

“DCT Definition” on page 9-17

“The DCT Transform Matrix” on page 9-19
“DCT and Image Compression” on page 9-19

DCT Definition

The discrete cosine transform (DCT) represents an image as a sum of
sinusoids of varying magnitudes and frequencies. The dct2 function computes
the two-dimensional discrete cosine transform (DCT) of an image. The DCT
has the property that, for a typical image, most of the visually significant
information about the image is concentrated in just a few coefficients of the
DCT. For this reason, the DCT is often used in image compression applications.
For example, the DCT is at the heart of the international standard lossy image
compression algorithm known as JPEG. (The name comes from the working
group that developed the standard: the Joint Photographic Experts Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows.

M-1N-1
_ m(2m+1ip  win+lyg O=p=M-1
qu = oo, z z Amnms o3 cos N . 0<g<N-1
m=0n=1
{ym, p=0 ) {1.@?, g =0
x = =
Poo\f/M, 1spsM-1 T |JT/N, 1=g<N-1

The values BFG‘ are called the DCT coefficients of A. (Note that matrix indices
in MATLAB® always start at 1 rather than 0; therefore, the MATLAB matrix

elements A(1,1) and B(1,1) correspond to the mathematical quantities Agp
and B 00, respectively.)

The DCT is an invertible transform, and its inverse is given by
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M-1N-1

_ m2m+1Lip  w2n+1lyg O=m=M-1

A .= ZU Zﬂupuqﬂpqms 5 eOS ——ar— Den <N -1
p=Ug=

I_{ym,p:o a_{l/J}'TT,q=D
P2 M, 1sp=M-1 ? TN, 1=g=N-1

The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can be written as a sum of MN functions of the form

ti2m+1ip  widn+1lyg O=p=M-1
0 0y COS — g oS ——p o, D<qeN-1

These functions are called the basis functions of the DCT. The DCT coefficients

r4, then, can be regarded as the weights applied to each basis function. For
8-by-8 matrices, the 64 basis functions are illustrated by this image.
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The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies
increase from top to bottom. The constant-valued basis function at the
upper left is often called the DC basis function, and the corresponding DCT

coefficient By is often called the DC coefficient.



Discrete Cosine Transform

The DCT Transform Matrix

There are two ways to compute the DCT using Image Processing Toolbox™
software. The first method is to use the dct2 function . dct2 uses an
FFT-based algorithm for speedy computation with large inputs. The second
method is to use the DCT transform matrix, which is returned by the function
dctmtx and might be more efficient for small square inputs, such as 8-by-8 or
16-by-16. The M-by-M transform matrix T is given by

1

e p=0 0=g=M-1
.
P ni2g+1ip

[T Ay 7 lep=sM-1, D=g=M-1]

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimensional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T'. Since T is a real orthonormal matrix, its inverse
is the same as its transpose. Therefore, the inverse two-dimensional DCT of
B is given by T'*B*T.

DCT and Image Compression

In the JPEG image compression algorithm, the input image is divided into
8-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the
DCT coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks
in the input image, discards (sets to zero) all but 10 of the 64 DCT coefficients
in each block, and then reconstructs the image using the two-dimensional
inverse DCT of each block. The transform matrix computation method is used.
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imread('cameraman.tif');
im2double(I);

dctmtx(8);

ct = @xX)T * x *T';

B = blkproc(I,[8 8],dct);

I
I
T
d

mask = [1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 01;
B2 = blkproc(B,[8 8],@(x)mask.* X);

invdect = @(x)T' * x * T;
I2 = blkproc(B2,[8 8],invdct);
imshow(I), figure, imshow(I2)

Image Caurtesy of MIT

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.
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Radon Transform

In this section...

“Radon Transformation Definition” on page 9-21
“Plotting the Radon Transform” on page 9-24

“Viewing the Radon Transform as an Image” on page 9-26

“Detecting Lines Using the Radon Transform” on page 9-27

Note For information about creating projection data from line integrals along
paths that radiate from a single source, called fan-beam projections, see
“Fan-Beam Projection Data” on page 9-38. To convert parallel-beam projection
data to fan-beam projection data, use the para2fan function.

Radon Transformation Definition

The radon function computes projections of an image matrix along specified
directions.

A projection of a two-dimensional function f(x,y) is a set of line integrals.
The radon function computes the line integrals from multiple sources along
parallel paths, or beams, in a certain direction. The beams are spaced 1
pixel unit apart. To represent an image, the radon function takes multiple,
parallel-beam projections of the image from different angles by rotating the
source around the center of the image. The following figure shows a single
projection at a specified rotation angle.
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For example, the line integral of f(x,y) in the vertical direction is the projection
of flx,y) onto the x-axis; the line integral in the horizontal direction is the
projection of f(x,y) onto the y-axis. The following figure shows horizontal and
vertical projections for a simple two-dimensional function.
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Horizontal and Vertical Projections of a Simple Function
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Projections can be computed along any angle [[THETA]]. In general, the
Radon transform of f(x,y) is the line integral of f parallel to the y -axis

RByx = Ef[x’msﬁ—_y’sﬁﬂ, x'=in B+ y cosf) dy’

where

x| _ | co=f =sinB||x
3 —=inB cos8||y

The following figure illustrates the geometry of the Radon transform.

y

RB[:L"_'J

Geomeiry of the Radon Transform

9-23



9 Transforms

9-24

Plotting the Radon Transform

You can compute the Radon transform of an image I for the angles specified
in the vector theta using the radon function with this syntax.

[R,xp] = radon(I,theta);

The columns of R contain the Radon transform for each angle in theta. The
vector xp contains the corresponding coordinates along the x-axis. The center
pixel of I is defined to be floor((size(I)+1)/2); this is the pixel on the
x"-axis corresponding to x* = 0.

The commands below compute and plot the Radon transform at 0° and 45° of
an image containing a single square object. xp is the same for all projection
angles.

I = zeros(100,100);

I(25:75, 25:75) = 1;

imshow(I)

[R,xp] = radon(I,[0 45]);

figure; plot(xp,R(:,1)); title('R_{0%0} (x\prime)"')



Radon Transform

Ry (X)
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Radon Transform of a Square Function at 0 Degrees

figure; plot(xp,R(:,2)); title('R_{45"0} (x\prime)"')
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Ryg0 (X)
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Radon Transform of a Square Function at 45 Degrees

Viewing the Radon Transform as an Image

The Radon transform for a large number of angles is often displayed as
an image. In this example, the Radon transform for the square image is
computed at angles from 0° to 180°, in 1° increments.

theta = 0:180;

[R,xp] = radon(I,theta);
imagesc(theta,xp,R);
title('R_{\theta} (X\prime)');
xlabel('\theta (degrees)');
ylabel('X\prime');

set(gca, 'XTick',0:20:180);
colormap(hot);

colorbar
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Radon Transform Using 180 Projections

Detecting Lines Using the Radon Transform

The Radon transform is closely related to a common computer vision operation
known as the Hough transform. You can use the radon function to implement
a form of the Hough transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.

I = fitsread('solarspectra.fts');
I mat2gray(I);

BW = edge(I);

imshow(I), figure, imshow(BW)
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2 Compute the Radon transform of the edge image.

theta = 0:179;

[R,xp] = radon(BW,theta);

figure, imagesc(theta, xp, R); colormap(hot);
xlabel('\theta (degrees)'); ylabel('x\prime');
title('R_{\theta} (x\prime)');

colorbar
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Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The
locations of these peaks correspond to the locations of straight lines in the
original image.

In the following figure, the strongest peaks in R correspond to # = 1% and

x" = —80. The line perpendicular to that angle and located at x* = —80

is shown below, superimposed in red on the original image. The Radon
transform geometry is shown in black. Notice that the other strong lines
parallel to the red line also appear as peaks at 8 = 17 in the transform. Also,
the lines perpendicular to this line appear as peaks at 8 = 917,
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o theta=1"

Radon Transform Geomeiry and the Strongest Peak (Red)
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The Inverse Radon Transformation

In this section...

“Inverse Radon Transform Definition” on page 9-31

“Example: Reconstructing an Image from Parallel Projection Data” on page
9-34

Inverse Radon Transform Definition

The iradon function inverts the Radon transform and can therefore be used
to reconstruct images.

As described in “Radon Transform” on page 9-21, given an image I and a
set of angles theta, the radon function can be used to calculate the Radon
transform.

R = radon(I,theta);

The function iradon can then be called to reconstruct the image I from
projection data.

IR = iradon(R,theta);
In the example above, projections are calculated from the original image I.

Note, however, that in most application areas, there is no original image from
which projections are formed. For example, the inverse Radon transform is
commonly used in tomography applications. In X-ray absorption tomography,
projections are formed by measuring the attenuation of radiation that passes
through a physical specimen at different angles. The original image can

be thought of as a cross section through the specimen, in which intensity
values represent the density of the specimen. Projections are collected using
special purpose hardware, and then an internal image of the specimen is
reconstructed by iradon. This allows for noninvasive imaging of the inside of
a living body or another opaque object.

iradon reconstructs an image from parallel-beam projections. In

parallel-beam geometry, each projection is formed by combining a set of line
integrals through an image at a specific angle.
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The following figure illustrates how parallel-beam geometry is applied in
X-ray absorption tomography. Note that there is an equal number of n
emitters and n sensors. Each sensor measures the radiation emitted from its
corresponding emitter, and the attenuation in the radiation gives a measure
of the integrated density, or mass, of the object. This corresponds to the line
integral that is calculated in the Radon transform.

The parallel-beam geometry used in the figure is the same as the geometry
that was described in “Radon Transform” on page 9-21. f(x,y) denotes the

brightness of the image and k glx f:'is the projection at angle theta.
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Parallel-Beam Projections Through an Obiject
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Another geometry that is commonly used is fan-beam geometry, in which
there is one source and n sensors. For more information, see “Fan-Beam
Projection Data” on page 9-38. To convert parallel-beam projection data into
fan-beam projection data, use the para2fan function.

Improving the Results

iradon uses the filtered backprojection algorithm to compute the inverse
Radon transform. This algorithm forms an approximation of the image I
based on the projections in the columns of R. A more accurate result can be
obtained by using more projections in the reconstruction. As the number of
projections (the length of theta) increases, the reconstructed image IR more
accurately approximates the original image I. The vector theta must contain
monotonically increasing angular values with a constant incremental angle
Dtheta. When the scalar Dtheta is known, it can be passed to iradon instead
of the array of theta values. Here is an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then
reconstructs the image using the filtered projections. In some cases, noise
can be present in the projections. To remove high frequency noise, apply a
window to the filter to attenuate the noise. Many such windowed filters are
available in iradon. The example call to iradon below applies a Hamming
window to the filter. See the iradon reference page for more information. To
get unfiltered backprojection data, specify 'none' for the filter parameter.

IR = iradon(R,theta, 'Hamming');

iradon also enables you to specify a normalized frequency, D, above which the
filter has zero response. D must be a scalar in the range [0,1]. With this option,
the frequency axis is rescaled so that the whole filter is compressed to fit into
the frequency range [0,D]. This can be useful in cases where the projections
contain little high-frequency information but there is high-frequency noise.
In this case, the noise can be completely suppressed without compromising
the reconstruction. The following call to iradon sets a normalized frequency
value of 0.85.

IR = iradon(R,theta,0.85);
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Example: Reconstructing an Image from Parallel
Projection Data

The commands below illustrate how to reconstruct an image from parallel
projection data. The test image is the Shepp-Logan head phantom, which can
be generated using the phantom function. The phantom image illustrates
many of the qualities that are found in real-world tomographic imaging of
human heads. The bright elliptical shell along the exterior is analogous to a
skull, and the many ellipses inside are analogous to brain features.

1 Create a Shepp-Logan head phantom image.

P = phantom(256);
imshow(P)

2 Compute the Radon transform of the phantom brain for three different
sets of theta values. R1 has 18 projections, R2 has 36 projections, and R3
has 90 projections.

thetal = 0:10:170; [R1,xp] = radon(P,thetal);
theta2 0:5:175; [R2,xp] radon(P,theta2);
theta3 0:2:178; [R3,xp] radon(P,theta3);

3 Display a plot of one of the Radon transforms of the Shepp-Logan head
phantom. The following figure shows R3, the transform with 90 projections.

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel('\theta'); ylabel('x\prime');
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Radon Transform of Head Phantom Using 90 Projections

Note how some of the features of the input image appear in this image of
the transform. The first column in the Radon transform corresponds to a
projection at 0° that is integrating in the vertical direction. The centermost
column corresponds to a projection at 90°, which is integrating in the
horizontal direction. The projection at 90° has a wider profile than the
projection at 0° due to the larger vertical semi-axis of the outermost ellipse
of the phantom.
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4 Reconstruct the head phantom image from the projection data created in
step 2 and display the results.

I1 iradon(R1,10);
I2 iradon(R2,5);
I3 = iradon(R3,2);
imshow(I1)

figure, imshow(I2)
figure, imshow(I3)

The following figure shows the results of all three reconstructions. Notice
how image I1, which was reconstructed from only 18 projections, is the
least accurate reconstruction. Image I2, which was reconstructed from 36
projections, is better, but it is still not clear enough to discern clearly the
small ellipses in the lower portion of the image. I3, reconstructed using
90 projections, most closely resembles the original image. Notice that
when the number of projections is relatively small (as in I1 and I2), the
reconstruction can include some artifacts from the back projection.
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13

Inverse Radon Transforms of the Shepp-Logan Head Phantom
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Fan-Beam Projection Data

9-38

In this section...

“Fan-Beam Projection Data Definition” on page 9-38
“Computing Fan-Beam Projection Data” on page 9-39

“Reconstructing an Image from Fan-Beam Projection Data” on page 9-41

“Example: Reconstructing a Head Phantom Image” on page 9-42

Note For information about creating projection data from line integrals along
parallel paths, see “Radon Transform” on page 9-21. To convert fan-beam
projection data to parallel-beam projection data, use the fan2para function.

Fan-Beam Projection Data Definition

The fanbeam function computes projections of an image matrix along specified
directions. A projection of a two-dimensional function f(x,y) is a set of line
integrals. The fanbeam function computes the line integrals along paths that
radiate from a single source, forming a fan shape. To represent an image, the
fanbeam function takes multiple projections of the image from different angles
by rotating the source around the center of the image. The following figure
shows a single fan-beam projection at a specified rotation angle.



Fan-Beam Projection Data

e

Sensars

[~

Rotatianangle theta

Vertex

Fan-Beam Projection at Rotation Angle Theta

Computing Fan-Beam Projection Data

To compute fan-beam projection data, use the fanbeam function. You specify
as arguments an image and the distance between the vertex of the fan-beam
projections and the center of rotation (the center pixel in the image). The
fanbeam function determines the number of beams, based on the size of the
image and the settings of fanbeam parameters.

The FanSensorGeometry parameter specifies how sensors are aligned. If
you specify the value 'arc' for FanSensorGeometry (the default), fanbeam
positions the sensors along an arc, spacing the sensors at 1 degree intervals.
Using the FanSensorSpacing parameter, you can control the distance
between sensors by specifying the angle between each beam. If you specify
the value 'line' for FanSensorGeometry parameter, fanbeam position
sensors along a straight line, rather than an arc. With 'line' geometry, the
FanSensorSpacing parameter specifies the distance between the sensors,
in pixels, along the x” axis.

fanbeam takes projections at different angles by rotating the source around
the center pixel at 1 degree intervals. Using the FanRotationIncrement
parameter you can specify a different rotation angle increment.

The following figures illustrate both these geometries. The first figure
illustrates geometry used by the fanbeam function when FanSensorGeometry
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is set to 'arc' (the default). Note how you specify the distance between
sensors by specifying the angular spacing of the beams.

FanSensarapacing, AY
measured in deqrees

Sensars

Fan rotafion angle

Vertex

Fan-Beam Projection with Arc Geometry

The following figure illustrates the geometry used by the fanbeam function
when FanSensorGeometry is set to '1line'. In this figure, note how you

specify the position of the sensors by specifying the distance between them in
pixels along the x’ axis.
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Fan-Beam Projection with Line Geometry

Reconstructing an Image from Fan-Beam Projection
Data

To reconstruct an image from fan-beam projection data, use the ifanbeam
function. With this function, you specify as arguments the projection data and
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the distance between the vertex of the fan-beam projections and the center
of rotation when the projection data was created. For example, this code
recreates the image I from the projection data P and distance D.

I = ifanbeam(P,D);

By default, the ifanbeam function assumes that the fan-beam projection data
was created using the arc fan sensor geometry, with beams spaced at 1 degree
angles and projections taken at 1 degree increments over a full 360 degree
range. As with the fanbeam function, you can use ifanbeam parameters to
specify other values for these characteristics of the projection data. Use the
same values for these parameters that were used when the projection data
was created. For more information about these parameters, see “Computing
Fan-Beam Projection Data” on page 9-39.

The ifanbeam function converts the fan-beam projection data to parallel-beam
projection data with the fan2para function, and then calls the iradon
function to perform the image reconstruction. For this reason, the ifanfeam
function supports certain iradon parameters, which it passes to the iradon
function. See “The Inverse Radon Transformation” on page 9-31 for more
information about the iradon function.

Example: Reconstructing a Head Phantom Image

The commands below illustrate how to use fanbeam and ifanbeam to form
projections from a sample image and then reconstruct the image from the
projections. The test image is the Shepp-Logan head phantom, which can be
generated by the phantom function. The phantom image illustrates many of
the qualities that are found in real-world tomographic imaging of human
heads.

1 Generate the test image and display it.

P = phantom(256);
imshow(P)



Fan-Beam Projection Data

2 Compute fan-beam projection data of the test image, using the
FanSensorSpacing parameter to vary the sensor spacing. The example
uses the fanbeam arc geometry, so you specify the spacing between sensors
by specifying the angular spacing of the beams. The first call spaces the
beams at 2 degrees; the second at 1 degree; and the third at 0.25 degrees.
In each call, the distance between the center of rotation and vertex of the
projections is constant at 250 pixels. In addition, fanbeam rotates the
projection around the center pixel at 1 degree increments.

D = 250;

dsensori = 2;
F1 = fanbeam(P,D, 'FanSensorSpacing',dsensori);

dsensor2 = 1;
F2 = fanbeam(P,D, 'FanSensorSpacing',dsensor2);

dsensor3d = 0.25
[F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,...
'FanSensorSpacing',dsensor3);

3 Plot the projection data F3. Because fanbeam calculates projection data
at rotation angles from 0 to 360 degrees, the same patterns occur at an
offset of 180 degrees. The same features are being sampled from both sides.
Compare this plot to the plot of the parallel-beam projection data of the
head phantom using 90 projections in “Example: Reconstructing an Image
from Parallel Projection Data” on page 9-34.

figure, imagesc(fan_rot_angles3, sensor_pos3, F3)
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colormap(hot); colorbar
xlabel('Fan Rotation Angle (degrees)')
ylabel('Fan Sensor Position (degrees)')

Fan Sansar Position [degreas)

o]

50 100 150 200 250 300 3450
Fan Rotation Angle (degrees)

Reconstruct the image from the fan-beam projection data using ifanbeam.
In each reconstruction, match the fan sensor spacing with the spacing
used when the projection data was created in step 2. The example uses the
OutputSize parameter to constrain the output size of each reconstruction
to be the same as the size of the original image |P].

output_size = max(size(P));

Ifan1t = ifanbeam(F1,D,
‘FanSensorSpacing',dsensori, 'OutputSize',output_size);
figure, imshow(Ifant)

Ifan2 = ifanbeam(F2,D,
‘FanSensorSpacing',dsensor2, 'OutputSize',output_size);
figure, imshow(Ifan2)

Ifan3 = ifanbeam(F3,D,
‘FanSensorSpacing',dsensor3, 'OutputSize',output_size);



Fan-Beam Projection Data

figure, imshow(Ifan3)

The following figure shows the result of each transform. Note how the
quality of the reconstruction gets better as the number of beams in the
projection increases. The first image, Ifan1, was created using 2 degree
spacing of the beams; the second image, ifan2, was created using 1 degree
spacing of the beams; the third image, ifan3, was created using 0.25
spacing of the beams.

Hanl Han? [fand

Reconstructions of the Head Phantom Image from Fan-Beam Projections
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Morphological Operations

This chapter describes the Image Processing Toolbox™ morphological
functions. You can use these functions to perform common image processing
tasks, such as contrast enhancement, noise removal, thinning, skeletonization,

filling, and segmentation.

Morphology Fundamentals: Dilation
and Erosion (p. 10-2)

Morphological Reconstruction
(p. 10-17)

Distance Transform (p. 10-36)

Labeling and Measuring Objects in a
Binary Image (p. 10-39)

Lookup Table Operations (p. 10-43)

Defines the two fundamental
morphological operations, dilation
and erosion, and some of the
morphological image processing
operations that are based on
combinations of these operations

Describes morphological
reconstruction and the toolbox
functions that use this type of
processing

Describes how to use the bwdist
function to compute the distance
transform of an image

Describes functions that return
information about a binary image

Describes functions that perform
lookup table operations
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Morphology Fundamentals: Dilation and Erosion

In this section...

“Understanding Dilation and Erosion” on page 10-2
“Understanding Structuring Elements” on page 10-5
“Dilating an Image” on page 10-9

“Eroding an Image” on page 10-10

“Combining Dilation and Erosion” on page 10-12

“Dilation- and Erosion-Based Functions” on page 10-14

To view an extended example that uses morphological processing to solve an
image processing problem, see the Image Processing Toolbox™ watershed
segmentation demo.

Understanding Dilation and Erosion

Morphology is a broad set of image processing operations that process images
based on shapes. Morphological operations apply a structuring element to an
input image, creating an output image of the same size. In a morphological
operation, the value of each pixel in the output image is based on a comparison
of the corresponding pixel in the input image with its neighbors. By choosing
the size and shape of the neighborhood, you can construct a morphological
operation that is sensitive to specific shapes in the input image.

The most basic morphological operations are dilation and erosion. Dilation
adds pixels to the boundaries of objects in an image, while erosion removes
pixels on object boundaries. The number of pixels added or removed from
the objects in an image depends on the size and shape of the structuring
element used to process the image. In the morphological dilation and erosion
operations, the state of any given pixel in the output image is determined
by applying a rule to the corresponding pixel and its neighbors in the input
image. The rule used to process the pixels defines the operation as a dilation
or an erosion. This table lists the rules for both dilation and erosion.
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Rules for Dilation and Erosion

Operation | Rule

Dilation The value of the output pixel is the maximum value of all
the pixels in the input pixel’s neighborhood. In a binary
image, if any of the pixels is set to the value 1, the output
pixel is set to 1.

Erosion The value of the output pixel is the minimum value of all the
pixels in the input pixel’s neighborhood. In a binary image,
if any of the pixels is set to 0, the output pixel is set to 0.

The following figure illustrates the dilation of a binary image. Note how the
structuring element defines the neighborhood of the pixel of interest, which is
circled. (See “Understanding Structuring Elements” on page 10-5 for more
information.) The dilation function applies the appropriate rule to the pixels
in the neighborhood and assigns a value to the corresponding pixel in the
output image. In the figure, the morphological dilation function sets the value
of the output pixel to 1 because one of the elements in the neighborhood
defined by the structuring element is on.

Stuckring Hamem
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Morphological Dilation of a Binary Image

The following figure illustrates this processing for a grayscale image. The
figure shows the processing of a particular pixel in the input image. Note
how the function applies the rule to the input pixel’s neighborhood and uses
the highest value of all the pixels in the neighborhood as the value of the
corresponding pixel in the output image.
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Morphological Dilation of a Grayscale Image

Processing Pixels at Image Borders (Padding Behavior)
Morphological functions position the origin of the structuring element, its
center element, over the pixel of interest in the input image. For pixels at
the edge of an image, parts of the neighborhood defined by the structuring
element can extend past the border of the image.

To process border pixels, the morphological functions assign a value to these
undefined pixels, as if the functions had padded the image with additional
rows and columns. The value of these padding pixels varies for dilation
and erosion operations. The following table describes the padding rules for
dilation and erosion for both binary and grayscale images.



Morphology Fundamentals: Dilation and Erosion

Rules for Padding Images

Operation Rule

Dilation Pixels beyond the image border are assigned the minimum
value afforded by the data type.

For binary images, these pixels are assumed to be set to
0. For grayscale images, the minimum value for uint8
images is 0.

Erosion Pixels beyond the image border are assigned the maximum
value afforded by the data type.

For binary images, these pixels are assumed to be set to
1. For grayscale images, the maximum value for uint8
images is 255.

Note By using the minimum value for dilation operations and the maximum
value for erosion operations, the toolbox avoids border effects, where regions
near the borders of the output image do not appear to be homogeneous with
the rest of the image. For example, if erosion padded with a minimum value,
eroding an image would result in a black border around the edge of the output
image.

Understanding Structuring Elements

An essential part of the dilation and erosion operations is the structuring
element used to probe the input image. A structuring element is a matrix
consisting of only 0’s and 1’s that can have any arbitrary shape and size. The
pixels with values of 1 define the neighborhood.

Two-dimensional, or flat, structuring elements are typically much smaller
than the image being processed. The center pixel of the structuring element,
called the origin, identifies the pixel of interest — the pixel being processed.
The pixels in the structuring element containing 1’s define the neighborhood
of the structuring element. These pixels are also considered in dilation or
erosion processing.
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Three-dimensional, or nonflat, structuring elements use 0’s and 1’s to define
the extent of the structuring element in the x- and y-planes and add height
values to define the third dimension.

The Origin of a Structuring Element

The morphological functions use this code to get the coordinates of the origin
of structuring elements of any size and dimension.

origin = floor((size(nhood)+1)/2)

(In this code nhood is the neighborhood defining the structuring element.
Because structuring elements are MATLAB® objects, you cannot use the
size of the STREL object itself in this calculation. You must use the STREL
getnhood method to retrieve the neighborhood of the structuring element
from the STREL object. For information about other STREL object methods, see
the strel function reference page.)

For example, the following illustrates a diamond-shaped structuring element.

Structuring Element - Origin
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Origin of a Diamond-Shaped Structuring Element

Creating a Structuring Element

The toolbox dilation and erosion functions accept structuring element objects,
called STRELs. You use the strel function to create STRELs of any arbitrary
size and shape. The strel function also includes built-in support for many
common shapes, such as lines, diamonds, disks, periodic lines, and balls.
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Note You typically choose a structuring element the same size and shape as
the objects you want to process in the input image. For example, to find lines
in an image, create a linear structuring element.

For example, this code creates a flat, diamond-shaped structuring element.

se = strel('diamond',3)
se =

Flat STREL object containing 25 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0

Structuring Element Decomposition

To enhance performance, the strel function might break structuring elements
into smaller pieces, a technique known as structuring element decomposition.

For example, dilation by an 11-by-11 square structuring element can be
accomplished by dilating first with a 1-by-11 structuring element, and
then with an 11-by-1 structuring element. This results in a theoretical
speed improvement of a factor of 5.5, although in practice the actual speed
improvement is somewhat less.

Structuring element decompositions used for the 'disk' and 'ball' shapes
are approximations; all other decompositions are exact. Decomposition is not
used with an arbitrary structuring element unless it is a flat structuring
element whose neighborhood matrix is all 1’s.
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To view the sequence of structuring elements used in a decomposition, use the
STREL getsequence method. The getsequence function returns an array of
the structuring elements that form the decomposition. For example, here are
the structuring elements created in the decomposition of a diamond-shaped
structuring element.

sel = strel('diamond',4)

sel =

Flat STREL object containing 41 neighbors.

Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0

seq = getsequence(sel)
seq =
3x1 array of STREL objects

seq(1)
ans =
Flat STREL object containing 5 neighbors.

Neighborhood:
0 1 0
1 1 1
0 1 0

seq(2)

ans =

Flat STREL object containing 4 neighbors.

Neighborhood:
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0 1 0

1 0 1

0 1 0
seq(3)

ans =
Flat STREL object containing 4 neighbors.

Neighborhood:
0 0 1 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 1 0 0

Dilating an Image
To dilate an image, use the imdilate function. The imdilate function accepts
two primary arguments:

¢ The input image to be processed (grayscale, binary, or packed binary image)

¢ A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imdilate also accepts two optional arguments: SHAPE and PACKOPT. The
SHAPE argument affects the size of the output image. The PACKOPT argument
identifies the input image as packed binary. (Packing is a method of
compressing binary images that can speed up the processing of the image. See
the bwpack reference page for information.)

This example dilates a simple binary image containing one rectangular object.

BW = zeros(9,10);

BW(4:6,4:7) = 1

BW =
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
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To expand all sides of the foreground component, the example uses a 3-by-3
square structuring element object. (For more information about using the
strel function, see “Understanding Structuring Elements” on page 10-5.)

SE = strel('square',3)
SE =

Flat STREL object containing 3 neighbors.

Neighborhood:
1 1 1
1 1 1
1 1 1

To dilate the image, pass the image BW and the structuring element SE to
the imdilate function. Note how dilation adds a rank of 1’s to all sides of
the foreground object.

BW2 = imdilate(BW,SE)

Bz =
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oo oo Do oo O
== R = =]
= = R e = =]
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(= I = R e = =
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[ = R = I =
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Eroding an Image

To erode an image, use the imerode function. The imerode function accepts
two primary arguments:
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® The input image to be processed (grayscale, binary, or packed binary image)

® A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imerode also accepts three optional arguments: SHAPE, PACKOPT, and M.

The SHAPE argument affects the size of the output image. The PACKOPT
argument identifies the input image as packed binary. If the image is packed
binary, M identifies the number of rows in the original image. (Packing is a
method of compressing binary images that can speed up the processing of the
image. See the bwpack reference page for more information.)

The following example erodes the binary image circbw.tif:
1 Read the image into the MATLAB workspace.
BW1 = imread('circbw.tif');

2 Create a structuring element. The following code creates a diagonal
structuring element object. (For more information about using the strel
function, see “Understanding Structuring Elements” on page 10-5.)

SE = strel('arbitrary',eye(5));
SE=

Flat STREL object containing 5 neighbors.

Neighborhood:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3 Call the imerode function, passing the image BW and the structuring
element SE as arguments.

BW2 = imerode (BW1,SE);

Notice the diagonal streaks on the right side of the output image. These
are due to the shape of the structuring element.
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imshow (BW1)
figure, imshow(BW2)

Original Image Eroded Image

Combining Dilation and Erosion

Dilation and erosion are often used in combination to implement image
processing operations. For example, the definition of a morphological opening
of an image is an erosion followed by a dilation, using the same structuring
element for both operations. The related operation, morphological closing of
an image, is the reverse: it consists of dilation followed by an erosion with the
same structuring element.

The following section uses imdilate and imerode to illustrate how to
implement a morphological opening. Note, however, that the toolbox already
includes the imopen function, which performs this processing. The toolbox
includes functions that perform many common morphological operations. See
“Dilation- and Erosion-Based Functions” on page 10-14 for a complete list.

Morphological Opening

You can use morphological opening to remove small objects from an image
while preserving the shape and size of larger objects in the image. For
example, you can use the imopen function to remove all the circuit lines
from the original circuit image, circbw.tif, creating an output image that
contains only the rectangular shapes of the microchips.

To morphologically open the image, perform these steps:
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1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element.

SE = strel('rectangle',[40 30]);

The structuring element should be large enough to remove the lines when
you erode the image, but not large enough to remove the rectangles. It
should consist of all 1’s, so it removes everything but large contiguous
patches of foreground pixels.

3 Erode the image with the structuring element.

BW2 = imerode(BW1,SE);
imshow (BW2)

This removes all the lines, but also shrinks the rectangles.

4 To restore the rectangles to their original sizes, dilate the eroded image
using the same structuring element, SE.

BW3 = imdilate(BW2,SE);
imshow (BW3)
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Dilation- and Erosion-Based Functions

This section describes two common image processing operations that are
based on dilation and erosion:

e Skeletonization

® Perimeter determination
This table lists other functions in the toolbox that perform common
morphological operations that are based on dilation and erosion. For more

information about these functions, see their reference pages.

Dilation- and Erosion-Based Functions

Function Morphological Definition

bwhitmiss Logical AND of an image, eroded with one structuring
element, and the image’s complement, eroded with a second
structuring element.

imbothat Subtracts the original image from a morphologically closed
version of the image. Can be used to find intensity troughs
in an image.

imclose Dilates an image and then erodes the dilated image using
the same structuring element for both operations.
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Dilation- and Erosion-Based Functions (Continued)

Function Morphological Definition
imopen Erodes an image and then dilates the eroded image using
the same structuring element for both operations.
imtophat Subtracts a morphologically opened image from the original
image. Can be used to enhance contrast in an image.
Skeletonization

To reduce all objects in an image to lines, without changing the essential
structure of the image, use the bwmorph function. This process is known as

skeletonization.

BW1
BW2

imread('circbw.tif');
bwmorph (BW1, 'skel',Inf);
imshow (BW1)

figure, imshow(BW2)

Original Image

Skeletonization of Image
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Perimeter Determination
The bwperim function determines the perimeter pixels of the objects in a

binary image. A pixel is considered a perimeter pixel if it satisfies both of
these criteria:

¢ The pixel is on.

¢ One (or more) of the pixels in its neighborhood is off.

For example, this code finds the perimeter pixels in a binary image of a
circuit board.

BW1 imread('circbw.tif');
BW2 bwperim(BW1) ;

imshow (BW1)

figure, imshow(BW2)

Original Image Perimefers Determined
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Morphological Reconstruction

In this section...

“Understanding Morphological Reconstruction” on page 10-17
“Understanding the Marker and Mask” on page 10-19

“Pixel Connectivity” on page 10-20

“Flood-Fill Operations” on page 10-23

“Finding Peaks and Valleys” on page 10-26

Understanding Morphological Reconstruction

Morphological reconstruction can be thought of conceptually as repeated
dilations of an image, called the marker image, until the contour of the marker
image fits under a second image, called the mask image. In morphological
reconstruction, the peaks in the marker image “spread out,” or dilate.

This figure illustrates this processing in 1-D. Each successive dilation is
constrained to lie underneath the mask. When further dilation ceases to
change the image, processing stops. The final dilation is the reconstructed
image. (Note: the actual implementation of this operation in the toolbox is
done much more efficiently. See the imreconstruct reference page for more
details.) The figure shows the successive dilations of the marker.
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Morphological reconstruction is based on morphological dilation, but note the
following unique properties:

® Processing is based on two images, a marker and a mask, rather than one
image and a structuring element.

® Processing is based on the concept of connectivity, rather than a structuring
element.

® Processing repeats until stability; i.e., the image no longer changes.

Understanding the Marker and Mask

Morphological reconstruction processes one image, called the marker, based
on the characteristics of another image, called the mask. The high points, or
peaks, in the marker image specify where processing begins. The processing
continues until the image values stop changing.

To illustrate morphological reconstruction, consider this simple image. It
contains two primary regions, the blocks of pixels containing the values 14
and 18. The background is primarily all set to 10, with some pixels set to 11.

A =1[10 10 10 10 10 10 10 10 10 10;
10 14 14 14 10 10 11 10 11 10;
10 14 14 14 10 10 10 11 10 10;
10 14 14 14 10 10 11 10 11 10;
10 10 10 10 10 10 10 10 10 10;
10 11 10 10 10 18 18 18 10 10;
10 10 10 11 10 18 18 18 10 10;
10 10 11 10 10 18 18 18 10 10
10 11 10 11 10 10 10 10 10 10;
10 10 10 10 10 10 11 10 10 10]:

To morphologically reconstruct this image, perform these steps:

1 Create a marker image. As with the structuring element in dilation and
erosion, the characteristics of the marker image determine the processing
performed in morphological reconstruction. The peaks in the marker image
should identify the location of objects in the mask image that you want to
emphasize.
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One way to create a marker image is to subtract a constant from the mask
image, using imsubtract.

marker = imsubtract(A,2)

marker =
8 8 8 8 8 8 8 8 8 8
8 12 12 12 8 8 9 8 9 8
8 12 12 12 8 8 8 9 8 8
8 12 12 12 8 8 9 8 9 8
8 8 8 8 8 8 8 8 8 8
8 9 8 8 8 16 16 16 8 8
8 8 8 9 8 16 16 16 8 8
8 8 9 8 8 16 16 16 8 8
8 9 8 9 8 8 8 8 8 8
8 8 8 8 8 8 9 8 8 8

2 Call the imreconstruct function to morphologically reconstruct the image.
In the output image, note how all the intensity fluctuations except the
intensity peak have been removed.

recon = imreconstruct(marker, mask)

recan =
10 10 10 10 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

Pixel Connectivity

Morphological processing starts at the peaks in the marker image and
spreads throughout the rest of the image based on the connectivity of the
pixels. Connectivity defines which pixels are connected to other pixels. A set
of pixels in a binary image that form a connected group is called an object or a
connected component.
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Determining which pixels create a connected component depends on how
pixel connectivity is defined. For example, this binary image contains one
foreground object or two, depending on the connectivity. If the foreground is
4-connected, the image is all one object — there is no distinction between

a foreground object and the background. However, if the foreground is
8-connected, the pixels set to 1 connect to form a closed loop and the image
has two separate objects: the pixels in the loop and the pixels outside the loop.

0

cooooooo
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co-—2000-—2o0O
OO0 2000 =0
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Defining Connectivity in an Image

The following table lists all the standard two- and three-dimensional
connectivities supported by the toolbox. See these sections for more
information:

® “Choosing a Connectivity” on page 10-22

® “Specifying Custom Connectivities” on page 10-23

Supported Connectivities

Two-Dimensional
Connectivities

4-connected Pixels are connected if their edges touch. i
This means that a pair of adjoining pixels are
part of the same object only if they are both -
on and are connected along the horizontal or ¥
vertical direction.

L]
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Supported Connectivities (Continued)

8-connected Pixels are connected if their edges or corners i
touch. This means that if two adjoining pixels
are on, they are part of the same object, ~ A
regardless of whether they are connected 4 ¥ Y
along the horizontal, vertical, or diagonal
direction.
Three-Dimensional
Connectivities
6-connected Pixels are connected if their faces touch. b foces
18-connected Pixels are connected if their faces or edges b foces +
touch. 12 edges
26-connected Pixels are connected if their faces, edges, or ffoces +
corners touch. 12 edges +
B eomers

Choosing a Connectivity

The type of neighborhood you choose affects the number of objects found in
an image and the boundaries of those objects. For this reason, the results
of many morphology operations often differ depending upon the type of
connectivity you specify.

For example, if you specify a 4-connected neighborhood, this binary image

contains two objects; if you specify an 8-connected neighborhood, the image
has one object.
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Specifying Custom Connectivities

You can also define custom neighborhoods by specifying a 3-by-3-by-...-by-3
array of 0’s and 1’s. The 1-valued elements define the connectivity of the
neighborhood relative to the center element.

For example, this array defines a “North/South” connectivity which can be
used to break up an image into independent columns.

CONN = [ 010; 010; 010 ]
CONN =

0 1 0

0 1 0

0 1 0

Note Connectivity arrays must be symmetric about their center element.
Also, you can use a 2-D connectivity array with a 3-D image; the connectivity
affects each "page" in the 3-D image.

Flood-Fill Operations

The imfill function performs a flood-fill operation on binary and grayscale
images. For binary images, imfill changes connected background pixels (0’s)
to foreground pixels (1’s), stopping when it reaches object boundaries. For
grayscale images, imfill brings the intensity values of dark areas that are
surrounded by lighter areas up to the same intensity level as surrounding
pixels. (In effect, imfill removes regional minima that are not connected to
the image border. See “Finding Areas of High or Low Intensity” on page 10-28
for more information.) This operation can be useful in removing irrelevant
artifacts from images. See these additional topics:

® “Specifying Connectivity” on page 10-24
® “Specifying the Starting Point” on page 10-24

10-23



'IO Morphological Operations

¢ “Filling Holes” on page 10-25

Specifying Connectivity
For both binary and grayscale images, the boundary of the fill operation is
determined by the connectivity you specify.

Note imfill differs from the other object-based operations in that it operates
on background pixels. When you specify connectivity with imfill, you are
specifying the connectivity of the background, not the foreground.

The implications of connectivity can be illustrated with this matrix.

BW = [

cooooooo
[ = SRS )
co-—r000 =0
co—~ro0o00 =0
co-—_ro000 =0
OO0 a0
Ocooooooo
oco0o0oo0oo0o0o0o

H

If the background is 4-connected, this binary image contains two separate
background elements (the part inside the loop and the part outside). If the
background is 8-connected, the pixels connect diagonally, and there is only
one background element.

Specifying the Starting Point

For binary images, you can specify the starting point of the fill operation by
passing in the location subscript or by using imfill in interactive mode,
selecting starting pixels with a mouse. See the reference page for imfill for
more information about using imfill interactively.

For example, if you call imfill, specifying the pixel BW(4,3) as the starting
point, imfill only fills the inside of the loop because, by default, the

background is 4-connected.

imfill (BW,[4 3])
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If you specify the same starting point, but use an 8-connected background
connectivity, imfill fills the entire image.

imfill(BW,[4 3],8)

ans

- 4 a4 g g g
- a4 a4 4O 4a a4 a
- 4 a4 a4 g a4
_ a4 a4 4O g a4 a
—_ a4 a4 4O 4a a4 a
_ a4 a4 O g a4
—_ a4 a4 a4 4a a4 a
—_ a4 a4 O a a4 a

Filling Holes

A common use of the flood-fill operation is to fill holes in images. For example,
suppose you have an image, binary or grayscale, in which the foreground
objects represent spheres. In the image, these objects should appear as
disks, but instead are donut shaped because of reflections in the original
photograph. Before doing any further processing of the image, you might
want to first fill in the “donut holes” using imfill.

Because the use of flood-fill to fill holes is so common, imfill includes special
syntax to support it for both binary and grayscale images. In this syntax,
you just specify the argument 'holes'; you do not have to specify starting

locations in each hole.

To illustrate, this example fills holes in a grayscale image of a spinal column.
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[X,map] = imread('spine.tif');
I = ind2gray(X,map);

Ifill = imfill(I, 'holes');
imshow(I);figure, imshow(Ifill)
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Finding Peaks and Valleys

Grayscale images can be thought of in three dimensions: the x- and y-axes
represent pixel positions and the z-axis represents the intensity of each pixel.
In this interpretation, the intensity values represent elevations, as in a
topographical map. The areas of high intensity and low intensity in an image,
peaks and valleys in topographical terms, can be important morphological
features because they often mark relevant image objects.

For example, in an image of several spherical objects, points of high intensity
could represent the tops of the objects. Using morphological processing, these
maxima can be used to identify objects in an image.

This section covers these topics:

¢ “Terminology” on page 10-27
¢ “Understanding the Maxima and Minima Functions” on page 10-27

¢ “Finding Areas of High or Low Intensity” on page 10-28



Morphological Reconstruction

® “Suppressing Minima and Maxima” on page 10-30

® “Imposing a Minimum” on page 10-32

Terminology
This section uses the following terms.

Term Definition

global maxima Highest regional maxima in the image. See the
entry for regional maxima in this table for more
information.

global minima Lowest regional minima in the image. See the
entry for regional minima in this table for more
information.

regional maxima Connected set of pixels of constant intensity

from which it is impossible to reach a point with
higher intensity without first descending; that is,
a connected component of pixels with the same
intensity value, ¢, surrounded by pixels that all
have a value less than ¢.

regional minima Connected set of pixels of constant intensity
from which it is impossible to reach a point with
lower intensity without first ascending; that is,
a connected component of pixels with the same
intensity value, ¢, surrounded by pixels that all
have a value greater than ¢.

Understanding the Maxima and Minima Functions

An image can have multiple regional maxima or minima but only a single
global maximum or minimum. Determining image peaks or valleys can be
used to create marker images that are used in morphological reconstruction.

This figure illustrates the concept in 1-D.
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Finding Areas of High or Low Intensity

The toolbox includes functions that you can use to find areas of high or low
intensity in an image:

® The imregionalmax and imregionalmin functions identify all regional
minima or maxima.

® The imextendedmax and imextendedmin functions identify regional
minima or maxima that are greater than or less than a specified threshold.

The functions accept a grayscale image as input and return a binary image
as output. In the output binary image, the regional minima or maxima are
set to 1; all other pixels are set to 0.

For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 13 and 18, and several smaller maxima,
set to 11.
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You might want only to identify areas of the image where the change in

intensity is extreme; that is, the difference between the pixel and neighboring
pixels is greater than (or less than) a certain threshold. For example, to find
only those regional maxima in the sample image, A, that are at least two units

higher than their neighbors, use imextendedmax.

B

imextendedmax (A,2)
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Suppressing Minima and Maxima

In an image, every small fluctuation in intensity represents a regional
minimum or maximum. You might only be interested in significant minima or
maxima and not in these smaller minima and maxima caused by background
texture.

To remove the less significant minima and maxima but retain the significant
minima and maxima, use the imhmax or imhmin function. With these functions,
you can specify a contrast criteria or threshold level, &, that suppresses all
maxima whose height is less than A or whose minima are greater than A.

Note The imregionalmin, imregionalmax, imextendedmin, and
imextendedmax functions return a binary image that marks the locations
of the regional minima and maxima in an image. The imhmax and imhmin
functions produce an altered image.

For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 14 and 18, and several smaller maxima,
set to 11.
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To eliminate all regional maxima except the two significant maxima, use

imhmax, specifying a threshold value of 2. Note that imhmax only affects the

maxima; none of the other pixel values are changed. The two significant

maxima remain, although their heights are reduced.

B = imhmax(A,2)
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This figure takes the second row from the sample image to illustrate in 1-D
how imhmax changes the profile of the image.
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Imposing a Minimum

You can emphasize specific minima (dark objects) in an image using the
imimposemin function. The imimposemin function uses morphological
reconstruction to eliminate all minima from the image except the minima
you specify.

To illustrate the process of imposing a minimum, this code creates a simple
image containing two primary regional minima and several other regional

minima.
mask = uint8(10*ones(10,10));
mask(6:8,6:8) = 2;
mask(2:4,2:4) = 7;
mask(3,3) = 5;
mask(2,9) = 9;
mask(3,8) = 9;
mask(9,2) = 9;
mask(8,3) = 9
mask = 10 10 10 10 10 10 10 10 10 10
10 7 7 I 10 10 10 10 g 10
10 7 5 ¥ 10 10 10 g 10 10
10 7 7 ¥ 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 2 2 2 10 10
10 10 10 10 10 2 2 2 10 10
10 10 9 10 10 2 2 2 10 10
10 9 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
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Creating a Marker Image

To obtain an image that emphasizes the two deepest minima and removes all
others, create a marker image that pinpoints the two minima of interest. You
can create the marker image by explicitly setting certain pixels to specific
values or by using other morphological functions to extract the features you
want to emphasize in the mask image.

This example uses imextendedmin to get a binary image that shows the
locations of the two deepest minima.

marker = imextendedmin(mask,1)

marker =

[ T T o T o Y T T T Y o
[ R e T e T T e T o R T T e
[ I T e T T e T o R T o I =
[ I T e T T o T o R T T
[ I T e T o T o T o B T T e
[ R R = =T =T = =
[ I R = =T =T = T =
[ R R = = = =T =
[ I T o T T o T o R T T R
[ I T e T T o T o R T T

Applying the Marker Image to the Mask

Now use imimposemin to create new minima in the mask image at the points
specified by the marker image. Note how imimposemin sets the values of
pixels specified by the marker image to the lowest value supported by the
datatype (0 for uint8 values). imimposemin also changes the values of all the
other pixels in the image to eliminate the other minima.
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I = imimposemin(mask,marker)

I =
11 11 11 11 11 11 11 11 11 11
11 8 8 8 11 11 11 11 11 11
11 8 0 8 11 11 11 11 11 11
11 8 8 8 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 0 0 0 11 11
11 11 11 11 11 0 0 0 11 11
11 11 11 11 11 0 0 0 11 11

11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11

This figure illustrates in 1-D how imimposemin changes the profile of row 2
of the image.
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Distance Transform

The distance transform provides a metric or measure of the separation of
points in the image. The bwdist function calculates the distance between each
pixel that is set to off (0) and the nearest nonzero pixel for binary images.

The bwdist function supports several distance metrics, listed in the following

table.
Distance Metrics
Distance Metric | Description lllustration
Euclidean The ‘Euch.dean' distance is the ofo]p I I
straight-line distance between
two pixels. o o 10|oo| 10
olo|o 141 10[1.41
[mag Distance fronsform
City Block The city block distance metric o o] o N I
measures the path between the
pixels based on a 4-connected o|1]o 1 (o]
neighborhood. P1xel§ whose ololo N I
edges touch are 1 unit apart;
pixels diagonally touching are | Image Distan e tronsfarm

2 units apart.
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Distance Metrics (Continued)

Distance Metric

Description lllustration

Chessboard The chessboard distance metric o lo e
measures the path between the })
pixels based on an 8-connected || @ V] o 1 (o |1
neighborhood. Pixels whose
edges or corners touch are 1 o I L]
unit apart. Imnge Ditonce tronsfarm
Quasi-Euclidean | The quasi-Euclidean metric ololololol Ralzzl2dz2l-8
measures the total Euclidean olololo — 217 ahol1alz2
distance along a set of
horizontal, vertical, and olof Hele| [ze|10] o102
diagonal line segments. o|Plojo 22|1.4|1.0/14|22
o|lo|o|o|lo| |28|z2.2|20(22|28

Imoge O'stonce fronstarm

This example creates a binary image containing two intersecting circular
objects.

centeri -10;

center2 = -centeri;

dist = sqrt(2*(2*centeri)"2);

radius = dist/2 * 1.4;

lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):1ims(2));

bw1 sqrt((x-centert1).”2 + (y-centerl).”2) <= radius;

bw2 sqrt((x-center2).”2 + (y-center2)."2) <= radius;

bw = bw1 | bw2;

figure, imshow(bw), title('bw')
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To compute the distance transform of the complement of the binary image,
use the bwdist function. In the image of the distance transform, note how the
centers of the two circular areas are white.

D = bwdist(~bw);
figure, imshow(D,[]), title('Distance transform of ~bw')

\
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Labeling and Measuring Objects in a Binary Image

In this section...

“Understanding Connected-Component Labeling” on page 10-39
“Selecting Objects in a Binary Image” on page 10-41
“Finding the Area of the Foreground of a Binary Image” on page 10-41

“Finding the Euler Number of a Binary Image” on page 10-42

Understanding Connected-Component Labeling

The bwlabel and the bwlabeln functions perform connected-component
labeling, which is a method for identifying objects in a binary image. The
bwlabel function supports 2-D inputs only; the bwlabeln function supports
inputs of any dimension.

These functions return a matrix, called a label matrix. A label matrix is an
image, the same size as the input image, in which the objects in the input
image are distinguished by different integer values in the output matrix.

Objects in a binary image are pixels that are on, i.e., set to the value 1; these
pixels are considered to be the foreground. When you view a binary image,
the foreground pixels appear white. Pixels that are off, i.e., set to the value
0, are considered to be the background. When you view a binary image, the
background pixels appear black.

The following example, illustrates how bwlabel can identify the objects in a
binary image. In the input matrix, BW, the pixels set to the value 1 represent
objects in the image. The pixels set to zero (0) represent the background. In
the output label matrix, X, bwlabel finds every object in the input image and
numbers them, in the order it finds them. Thus, the second object it found,
it set all the pixels in the object to 2; in the third object all pixels are set to
3, etc. (bwlabel uses pixel connectivity to determine where the boundaries
between objects are in an image. For information, see “Pixel Connectivity”
on page 10-20.)

BW = [0 0 0 0 0 0 0 0;
0 1 1 0 0 1 1 1;
0 1 1 0 0 0 1 1;
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Viewing a Label Matrix

The label matrix returned by bwlabel or bwlabeln is of class double; it

is not a binary image. One way to view it is to display it as a pseudocolor
indexed image, using label2rgb. In the pseudocolor image, each number that
identifies an object in the label matrix is used as an index value into the
associated colormap matrix. When you view a label matrix as an pseudocolor
image, the objects in the image are easier to distinguish.

To illustrate this technique, this example uses label2rgb to view the label
matrix X. The call to label2rgb specifies one of the standard MATLAB®
colormaps, jet. The third argument, 'k', specifies the background color
(black).

X = bwlabel(BW1,4);
RGB = label2rgb(X, @jet, 'k');
imshow(RGB, 'notruesize')
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Using Color to Distinguish Objects in a Binary Image

Selecting Objects in a Binary Image

You can use the bwselect function to select individual objects in a binary
image. You specify pixels in the input image, and bwselect returns a binary
image that includes only those objects from the input image that contain one
of the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For
example, suppose you want to select objects in the image displayed in the
current axes. You type

BW2 = bwselect;

The cursor changes to crosshairs when it is over the image. Click the objects
you want to select; bwselect displays a small star over each pixel you
click. When you are done, press Return. bwselect returns a binary image
consisting of the objects you selected, and removes the stars.

See the reference page for bwselect for more information.

Finding the Area of the Foreground of a Binary
Image

The bwarea function returns the area of a binary image. The area is a
measure of the size of the foreground of the image. Roughly speaking, the
area is the number of on pixels in the image.
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10-42

bwarea does not simply count the number of pixels set to on, however. Rather,
bwarea weights different pixel patterns unequally when computing the area.
This weighting compensates for the distortion that is inherent in representing
a continuous image with discrete pixels. For example, a diagonal line of 50
pixels is longer than a horizontal line of 50 pixels. As a result of the weighting
bwarea uses, the horizontal line has area of 50, but the diagonal line has
area of 62.5.

This example uses bwarea to determine the percentage area increase in
circbw.tif that results from a dilation operation.

BW = imread('circbw.tif');

SE ones(5);

BW2 = imdilate(BW,SE);

increase = (bwarea(BW2) - bwarea(BW))/bwarea(BW)
increase =

0.3456

See the reference page for bwarea for more information about the weighting
pattern.

Finding the Euler Number of a Binary Image

The bweuler function returns the Euler number for a binary image. The
Euler number is a measure of the topology of an image. It is defined as the
total number of objects in the image minus the number of holes in those
objects. You can use either 4- or 8-connected neighborhoods.

This example computes the Euler number for the circuit image, using
8-connected neighborhoods.

BW1 = imread('circbw.tif');
eul bweuler(BW1,8)

eul
-85

In this example, the Euler number is negative, indicating that the number of
holes is greater than the number of objects.
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Lookup Table Operations

In this section...

“Creating a Lookup Table” on page 10-43

“Using a Lookup Table” on page 10-43

Creating a Lookup Table

Certain binary image operations can be implemented most easily through
lookup tables. A lookup table is a column vector in which each element
represents the value to return for one possible combination of pixels in

a neighborhood. To create lookup tables for various operations, use the
makelut function. makelut creates lookup tables for 2-by-2 and 3-by-3
neighborhoods. The following figure illustrates these types of neighborhoods.
Each neighborhood pixel is indicated by an x, and the center pixel is the one
with a circle.

x|x|x
@ x x @ x
x| x x|lx|x
2-by-2 neighbarhoad 3-by-3 neighbarhoad

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels
in the neighborhood. Therefore, the lookup table for this operation is a
16-element vector. For a 3-by-3 neighborhood, there are 512 permutations, so
the lookup table is a 512-element vector.

Note makelut and applylut support only 2-by-2 and 3-by-3 neighborhoods.
Lookup tables larger than 3-by-3 neighborhoods are not practical. For
example, a lookup table for a 4-by-4 neighborhood would have 65,536 entries.

Using a Lookup Table

Once you create a lookup table, you can use it to perform the desired operation
by using the applylut function.
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The example below illustrates using lookup table operations to modify an
image containing text. The example creates an anonymous function that
returns 1 if three or more pixels in the 3-by-3 neighborhood are 1; otherwise, it
returns 0. The example then calls makelut, passing in this function as the first
argument, and using the second argument to specify a 3-by-3 lookup table.

f = @(x) sum(x(:)) >= 3;
lut = makelut(f,3);

lut is returned as a 512-element vector of 1’s and 0’s. Each value is the output
from the function for one of the 512 possible permutations.

You then perform the operation using applylut.

BW1 imread('text.png');
BW2 applylut(BW1,1lut);
imshow (BW1)

figure, imshow(BW2)

The term watershed
refers to a ridge that ..

The term watershed
refers to a ridge that ...
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Image Before and After Applying Lookup Table Operation

For information about how applylut maps pixel combinations in the image to
entries in the lookup table, see the reference page for applylut.



Analyzing and Enhancing

Images

This chapter describes functions that support a range of standard image
processing operations for analyzing and enhancing images.

Getting Information about Image
Pixel Values and Image Statistics
(p. 11-2)

Analyzing Images (p. 11-11)

Analyzing the Texture of an Image
(p. 11-25)

Adjusting Pixel Intensity Values
(p. 11-35)

Removing Noise from Images
(p. 11-48)

Return information about the data
values that make up an image

Return information about the
structure of an image

Return information about the
texture of an image

Improve an image by intensity
adjustment

Improve an image by removing noise
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Getting Information about Image Pixel Values and Image
Statistics

In this section...

“Getting Image Pixel Values Using impixel” on page 11-2

“Creating an Intensity Profile of an Image Using improfile” on page 11-3
“Displaying a Contour Plot of Image Data” on page 11-7

“Creating an Image Histogram Using imhist” on page 11-9

“Getting Summary Statistics About an Image” on page 11-10

“Computing Properties for Image Regions” on page 11-10

Getting Image Pixel Values Using impixel

To determine the values of one or more pixels in an image and return the
values in a variable, use the impixel function. You can specify the pixels by
passing their coordinates as input arguments or you can select the pixels
interactively using a mouse. impixel returns the value of specified pixels in a
variable in the MATLAB® workspace.

Note You can also get pixel value information interactively using the Image
Tool — see “Getting Information about the Pixels in an Image” on page 4-29.

This example illustrates how to use impixel to get pixel values.
1 Display an image.
imshow canoe.tif

2 Call impixel. When called with no input arguments, impixel associates
itself with the image in the current axes.

vals = impixel

3 Select the points you want to examine in the image by clicking the mouse.
impixel places a star at each point you select.
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4 When you are finished selecting points, press Return. impixel returns the
pixel values in an n-by-3 array, where n is the number of points you selected.
The stars used to indicate selected points disappear from the image.

pixel_values =

0.1294 0.1294 0.1294
0.5176 0 0
0.7765 0.6118 0.4196

Creating an Intensity Profile of an Image Using
improfile

The intensity profile of an image is the set of intensity values taken from
regularly spaced points along a line segment or multiline path in an image.
For points that do not fall on the center of a pixel, the intensity values are
interpolated.

To create an intensity profile, use the improfile function. This function
calculates and plots the intensity values along a line segment or a multiline
path in an image. You define the line segment (or segments) by specifying
their coordinates as input arguments. You can define the line segments using
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a mouse. (By default, improfile uses nearest-neighbor interpolation, but you
can specify a different method. For more information, see .) improfile works
best with grayscale and truecolor images.

For a single line segment, improfile plots the intensity values in a
two-dimensional view. For a multiline path, improfile plots the intensity
values in a three-dimensional view.

If you call improfile with no arguments, the cursor changes to crosshairs
when it is over the image. You can then specify line segments by clicking
the endpoints; improfile draws a line between each two consecutive points
you select. When you finish specifying the path, press Return. improfile
displays the plot in a new figure.

In this example, you call improfile and specify a single line with the mouse.
In this figure, the line is shown in red, and is drawn from top to bottom.

I = fitsread('solarspectra.fts');
imshow(I,[]);
improfile

Image Courtesy of Ann Walker

improfile displays a plot of the data along the line. Notice the peaks and
valleys and how they correspond to the light and dark bands in the image.
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The example below shows how improfile works with an RGB image. Use
imshow to display the image in a figure window. Call improfile without
any arguments and trace a line segment in the image interactively. In the
figure, the black line indicates a line segment drawn from top to bottom.
Double-click to end the line segment.

imshow peppers.png
improfile
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RGB Image with Line Segment Drawn with improfile

The improfile function displays a plot of the intensity values along the

line segment. The plot includes separate lines for the red, green, and blue
intensities. In the plot, notice how low the blue values are at the beginning of
the plot where the line traverses the orange pepper.
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Displaying a Contour Plot of Image Data

You can use the toolbox function imcontour to display a contour plot of the
data in a grayscale image. A contour is a path in an image along which the
image intensity values are equal to a constant. This function is similar to the
contour function in MATLAB, but it automatically sets up the axes so their
orientation and aspect ratio match the image.

This example displays a grayscale image of grains of rice and a contour plot of
the image data:
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1 Read a grayscale image and display it.

I = imread('rice.png');
imshow(1I)

2 Display a contour plot of the grayscale image.

figure, imcontour(I,3)

NS VRPN
100 S 7 = %ﬂQQ

250 O~ . C;? .rlqbb.

50 100 150 200 250

You can use the clabel function to label the levels of the contours. See the
description of clabel in the MATLAB Function Reference for details.
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Creating an Image Histogram Using imhist

An image histogram is a chart that shows the distribution of intensities in

an indexed or grayscale image. You can use the information in a histogram
to choose an appropriate enhancement operation. For example, if an image
histogram shows that the range of intensity values is small, you can use an
intensity adjustment function to spread the values across a wider range.

To create an image histogram, use the imhist function. This function creates
a histogram plot by making n equally spaced bins, each representing a range
of data values. It then calculates the number of pixels within each range.

The following example displays an image of grains of rice and a histogram
based on 64 bins. The histogram shows a peak at around 100, corresponding
to the dark gray background in the image. For information about how to
modify an image by changing the distribution of its histogram, see “Adjusting
Intensity Values to a Specified Range” on page 11-36.

1 Read image and display it.

I = imread('rice.png');
imshow(I)

2 Display histogram of image.

figure, imhist(I)
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Getting Summary Statistics About an Image

You can compute standard statistics of an image using the mean2, std2, and
corr2 functions. mean2 and std2 compute the mean and standard deviation of
the elements of a matrix. corr2 computes the correlation coefficient between
two matrices of the same size.

These functions are two-dimensional versions of the mean, std, and corrcoef
functions described in the MATLAB Function Reference.

Computing Properties for Image Regions

You can use the regionprops function to compute properties for image
regions. For example, regionprops can measure such properties as the area,
center of mass, and bounding box for a region you specify. See the reference
page for regionprops for more information.
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Analyzing Images

In this section...

“Detecting Edges Using the edge Function” on page 11-11
“Tracing Object Boundaries in an Image” on page 11-13
“Detecting Lines Using the Hough Transform” on page 11-18

“Analyzing Image Homogeneity Using Quadtree Decomposition” on page
11-22

The toolbox also includes functions that return information about the texture
of an image. See “Analyzing the Texture of an Image” on page 11-25 for more
information.

Detecting Edges Using the edge Function

In an image, an edge is a curve that follows a path of rapid change in image
intensity. Edges are often associated with the boundaries of objects in a scene.
Edge detection is used to identify the edges in an image.

To find edges, you can use the edge function. This function looks for places in
the image where the intensity changes rapidly, using one of these two criteria:

¢ Places where the first derivative of the intensity is larger in magnitude
than some threshold

¢ Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements
one of the definitions above. For some of these estimators, you can specify
whether the operation should be sensitive to horizontal edges, vertical edges,
or both. edge returns a binary image containing 1’s where edges are found
and 0’s elsewhere.

The most powerful edge-detection method that edge provides is the Canny
method. The Canny method differs from the other edge-detection methods in
that it uses two different thresholds (to detect strong and weak edges), and
includes the weak edges in the output only if they are connected to strong
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edges. This method is therefore less likely than the others to be fooled by
noise, and more likely to detect true weak edges.

The following example illustrates the power of the Canny edge detector by
showing the results of applying the Sobel and Canny edge detectors to the

same image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)

2 Apply the Sobel and Canny edge detectors to the image and display them.

BW1 = edge(I, 'sobel');
BW2 edge(I, 'canny');
imshow (BW1)

figure, imshow(BW2)

Sobel Filter Canny Filter
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Tracing Object Boundaries in an Image
The toolbox includes two functions you can use to find the boundaries of

objects in a binary image:

® pwtraceboundary

® pwboundaries

The bwtraceboundary function returns the row and column coordinates of all

the pixels on the border of an object in an image. You must specify the location
of a border pixel on the object as the starting point for the trace.

The bwboundaries function returns the row and column coordinates of border
pixels of all the objects in an image.

For both functions, the nonzero pixels in the binary image belong to an object
and pixels with the value 0 (zero) constitute the background.

The following example uses bwtraceboundary to trace the border of an object
in a binary image and then uses bwboundaries to trace the borders of all the

objects in the image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)

2 Convert the image to a binary image. bwtraceboundary and bwboundaries
only work with binary images.
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BW = im2bw(I);
imshow (BW)

3 Determine the row and column coordinates of a pixel on the border of
the object you want to trace. bwboundary uses this point as the starting
location for the boundary tracing.

dim = size(BW)
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)))

4 Call bwtraceboundary to trace the boundary from the specified point. As
required arguments, you must specify a binary image, the row and column
coordinates of the starting point, and the direction of the first step. The
example specifies north ('N'). For information about this parameter, see
“Choosing the First Step and Direction for Boundary Tracing” on page
11-16.

boundary = bwtraceboundary(BW,[row, col], 'N');

5 Display the original grayscale image and use the coordinates returned by
bwtraceboundary to plot the border on the image.

imshow(I)

hold on;
plot(boundary(:,2),boundary(:,1),'g"', 'LineWidth',3);
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I_ Objedt with traced boundary

6 To trace the boundaries of all the coins in the image, use the bwboundaries
function. By default, bwboundaries finds the boundaries of all objects in
an image, including objects inside other objects. In the binary image used
in this example, some of the coins contain black areas that bwboundaries
interprets as separate objects. To ensure that bwboundaries only traces
the coins, use imfill to fill the area inside each coin.

BW_filled = imfill(BW, 'holes');
boundaries = bwboundaries(BW_filled);

bwboundaries returns a cell array, where each cell contains the row/column
coordinates for an object in the image.

7 Plot the borders of all the coins on the original grayscale image using the
coordinates returned by bwboundaries.

for k=1:10
b = boundaries{k};
plot(b(:,2),b(:,1),'g', 'LineWidth',3);
end
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Choosing the First Step and Direction for Boundary Tracing
For certain objects, you must take care when selecting the border pixel you
choose as the starting point and the direction you choose for the first step
parameter (north, south, etc.).

For example, if an object contains a hole and you select a pixel on a thin part
of the object as the starting pixel, you can trace the outside border of the
object or the inside border of the hole, depending on the direction you choose
for the first step. For filled objects, the direction you select for the first step
parameter is not as important.

To illustrate, this figure shows the pixels traced when the starting pixel is
on a thin part of the object and the first step is set to north and south. The
connectivity is set to 8 (the default).
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Impact of First Step and Direction Parameters on Boundary Tracing
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Detecting Lines Using the Hough Transform

This section describes how to use the Hough transform functions to detect
lines in an image. The following table lists the Hough transform functions in
the order you use them to perform this task.

Function

Description

hough

The hough function implements the Standard Hough
Transform (SHT). The Hough transform is designed to
detect lines, using the parametric representation of a line:

rho = x*cos(theta) + y*sin(theta)

The variable rho is the distance from the origin to the
line along a vector perpendicular to the line. theta is
the angle between the x-axis and this vector. The hough
function generates a parameter space matrix whose rows
and columns correspond to these rho and theta values,
respectively.

houghpeaks

After you compute the Hough transform, you can use the
houghpeaks function to find peak values in the parameter
space. These peaks represent potential lines in the input
image.

houghlines

After you identify the peaks in the Hough transform, you
can use the houghlines function to find the endpoints of
the line segments corresponding to peaks in the Hough
transform. This function automatically fills in small gaps
in the line segments.

The following example shows how to use these functions to detect lines in

an image.

1 Read an image into the MATLAB® workspace.

I =

imread('circuit.tif');

2 For this example, rotate and crop the image using the imrotate function.

rotl
fig1

imrotate(I,33, 'crop');
imshow(rotI);
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3 Find the edges in the image using the edge function.

BW = edge(rotI,'canny');
figure, imshow(BW);

4 Compute the Hough transform of the image using the hough function.

[H,theta,rho] = hough (BW);

5 Display the transform using the imshow function.

figure, imshow(imadjust(mat2gray(H)),[],'XData',theta, 'YData',rho,...

‘InitialMagnification', 'fit');
xlabel('\theta (degrees)'), ylabel('\rho');
axis on, axis normal, hold on;
colormap(hot)
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6 Find the peaks in the Hough transform matrix, H, using the houghpeaks
function.

P = houghpeaks(H,5, 'threshold',ceil(0.3*max(H(:))));

7 Superimpose a plot on the image of the transform that identifies the peaks.
x = theta(P(:,2));

y = rho(P(:,1));
plot(x,y,'s', 'color', 'black');
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8 Find lines in the image using the houghlines function.
lines = houghlines(BW,theta,rho,P, 'FillGap',5, 'MinLength',7);
9 Create a plot that superimposes the lines on the original image.

figure, imshow(rotI), hold on

max_len = 0;

for k = 1:1length(1lines)
Xy [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2), ' 'LineWidth',2, 'Color', " 'green');

% Plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),'x"', 'LineWidth',2, 'Color', 'yellow');
plot(xy(2,1),xy(2,2),'x"', 'LineWidth',2, 'Color', 'red');

% Determine the endpoints of the longest line segment

len = norm(lines(k).point1 - lines(k).point2);
if ( len > max_len)
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max_len = len;
xy_long XY
end
end

% highlight the longest line segment
plot(xy_long(:,1),xy_long(:,2), ' 'LineWidth',2, 'Color', 'cyan');

Analyzing Image Homogeneity Using Quadtree
Decomposition

Quadtree decomposition is an analysis technique that involves subdividing
an image into blocks that are more homogeneous than the image itself. This
technique reveals information about the structure of the image. It is also
useful as the first step in adaptive compression algorithms.

You can perform quadtree decomposition using the qtdecomp function. This
function works by dividing a square image into four equal-sized square blocks,
and then testing each block to see if it meets some criterion of homogeneity
(e.g., if all the pixels in the block are within a specific dynamic range). If a
block meets the criterion, it is not divided any further. If it does not meet
the criterion, it is subdivided again into four blocks, and the test criterion is
applied to those blocks. This process is repeated iteratively until each block
meets the criterion. The result might have blocks of several different sizes.
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Example: Performing Quadtree Decomposition

To illustrate, this example performs quadtree decomposition on a 512-by-512
grayscale image.

1 Read in the grayscale image.
I = imread('liftingbody.png');

2 Specify the test criteria used to determine the homogeneity of each block
in the decomposition. For example, the criterion might be this threshold
calculation.

max(block(:)) - min(block(:)) <= 0.2

You can also supply gqtdecomp with a function (rather than a threshold
value) for deciding whether to split blocks; for example, you might base the
decision on the variance of the block. See the reference page for gtdecomp
for more information.

3 Perform this quadtree decomposition by calling the qtdecomp function,
specifying the image and the threshold value as arguments.

S = gtdecomp(I,0.27)

You specify the threshold as a value between 0 and 1, regardless of the
class of I. If I is uint8, gtdecomp multiplies the threshold value by 255 to
determine the actual threshold to use. If I is uint16, gtdecomp multiplies
the threshold value by 65535.

gtdecomp first divides the image into four 256-by-256 blocks and applies the
test criterion to each block. If a block does not meet the criterion, gtdecomp
subdivides it and applies the test criterion to each block. gtdecomp continues
to subdivide blocks until all blocks meet the criterion. Blocks can be as small
as 1-by-1, unless you specify otherwise.

gtdecomp returns S as a sparse matrix, the same size as I. The nonzero
elements of S represent the upper left corners of the blocks; the value of each

nonzero element indicates the block size.

The following figure shows the original image and a representation of its
quadtree decomposition. (To see how this representation was created, see the
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example on the qtdecomp reference page.) Each black square represents a
homogeneous block, and the white lines represent the boundaries between
blocks. Notice how the blocks are smaller in areas corresponding to large
changes in intensity in the image.

mage Courlesy ol MASA

Image and a Representation of Its Quadiree Decomposition
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Analyzing the Texture of an Image

In this section...

“Understanding Texture Analysis” on page 11-25
“Using Texture Filter Functions” on page 11-25
“Using a Gray-Level Co-Occurrence Matrix (GLCM)” on page 11-29

Understanding Texture Analysis

The toolbox supports a set of functions that you can use for texture analysis.
Texture analysis refers to the characterization of regions in an image by their
texture content. Texture analysis attempts to quantify intuitive qualities
described by terms such as rough, smooth, silky, or bumpy as a function of
the spatial variation in pixel intensities. In this sense, the roughness or
bumpiness refers to variations in the intensity values, or gray levels.

Texture analysis is used in a variety of applications, including remote sensing,
automated inspection, and medical image processing. Texture analysis can
be used to find the texture boundaries, called texture segmentation. Texture
analysis can be helpful when objects in an image are more characterized

by their texture than by intensity, and traditional thresholding techniques
cannot be used effectively.

Using Texture Filter Functions

The toolbox includes several texture analysis functions that filter an image
using standard statistical measures, listed in the following table.

Function Description

rangefilt Calculates the local range of an image.

stdfilt Calculates the local standard deviation of an image.

entropyfilt Calculates the local entropy of a grayscale image.
Entropy is a statistical measure of randomness.

These statistics can characterize the texture of an image because they provide
information about the local variability of the intensity values of pixels in an
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image. For example, in areas with smooth texture, the range of values in the
neighborhood around a pixel will be a small value; in areas of rough texture,
the range will be larger. Similarly, calculating the standard deviation of pixels
in a neighborhood can indicate the degree of variability of pixel values in
that region.

The following sections provide additional information about the texture
functions:
® “Understanding the Texture Filter Functions” on page 11-26

e “Example: Using the Texture Functions” on page 11-27

Understanding the Texture Filter Functions

The functions all operate in a similar way: they define a neighborhood around
the pixel of interest, calculate the statistic for that neighborhood, and use that
value as the value of the pixel of interest in the output image.

This example shows how the rangefilt function operates on a simple array.

A=[12345;678910; 11 12 13 14 15; 16 17 18 19 20 ]
A =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

B = rangefilt(A)
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The following figure shows how the value of element B(2,4) was calculated
from A(2,4). By default, the rangefilt function uses a 3-by-3 neighborhood
but you can specify neighborhoods or different shapes and sizes.

Minimum value in neighbarhood
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Determining Pixel Values in Range Filtered Output Image

The stdfilt and entropyfilt functions operate similarly, defining a
neighborhood around the pixel of interest and calculating the statistic for
the neighborhood to determine the pixel value in the output image. The
stdfilt function calculates the standard deviation of all the values in the
neighborhood.

The entropyfilt function calculates the entropy of the neighborhood and
assigns that value to the output pixel. Note that, by default, the entropyfilt
function defines a 9-by-9 neighborhood around the pixel of interest. To
calculate the entropy of an entire image, use the entropy function.

Example: Using the Texture Functions

The following example illustrates how the texture filter functions can detect
regions of texture in an image. In the figure, the background is smooth; there
is very little variation in the gray-level values. In the foreground, the surface
contours of the coins exhibit more texture. In this image, foreground pixels
have more variability and thus higher range values. Range filtering makes
the edges and contours of the coins more visible.

To see an example of using filtering functions, view the Texture Segmentation
Using Texture Filters demo.
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1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)

2 Filter the image with the rangefilt function and display the results. Note
how range filtering highlights the edges and surface contours of the coins.

K = rangefilt(I);
figure, imshow(K)
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Using a Gray-Level Co-Occurrence Matrix (GLCM)

A statistical method of examining texture that considers the spatial
relationship of pixels is the gray-level co-occurrence matrix (GLCM), also
known as the gray-level spatial dependence matrix. The GLCM functions
characterize the texture of an image by calculating how often pairs of pixel
with specific values and in a specified spatial relationship occur in an image,
creating a GLCM, and then extracting statistical measures from this matrix.
The texture filter functions, described in “Using Texture Filter Functions”
on page 11-25, cannot provide information about shape, i.e., the spatial
relationships of pixels in an image.

® “Creating a Gray-Level Co-Occurrence Matrix” on page 11-29
® “Specifying the Offsets” on page 11-30

® “Deriving Statistics from a GLCM” on page 11-31

¢ “Example: Plotting the Correlation” on page 11-32

Creating a Gray-Level Co-Occurrence Matrix

To create a GLCM, use the graycomatrix function. The graycomatrix
function creates a gray-level co-occurrence matrix (GLCM) by calculating
how often a pixel with the intensity (gray-level) value i occurs in a specific
spatial relationship to a pixel with the value j. By default, the spatial
relationship is defined as the pixel of interest and the pixel to its immediate
right (horizontally adjacent), but you can specify other spatial relationships
between the two pixels. Each element (i,j) in the resultant glcm is simply
the sum of the number of times that the pixel with value i occurred in the
specified spatial relationship to a pixel with value j in the input image.

The number of gray levels in the image determines the size of the GLCM. By
default, graycomatrix uses scaling to reduce the number of intensity values
in an image to eight, but you can use the NumLevels and the GrayLimits
parameters to control this scaling of gray levels. See the graycomatrix
reference page for more information.

The gray-level co-occurrence matrix can reveal certain properties about the
spatial distribution of the gray levels in the texture image. For example, if
most of the entries in the GLCM are concentrated along the diagonal, the
texture is coarse with respect to the specified offset. You can also derive
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several statistical measures from the GLCM. See “Deriving Statistics from a
GLCM” on page 11-31 for more information.

To illustrate, the following figure shows how graycomatrix calculates the
first three values in a GLCM. In the output GLCM, element (1,1) contains
the value 1 because there is only one instance in the input image where two
horizontally adjacent pixels have the values 1 and 1, respectively. glcm(1,2)
contains the value 2 because there are two instances where two horizontally
adjacent pixels have the values 1 and 2. Element (1,3) in the GLCM has the
value 0 because there are no instances of two horizontally adjacent pixels
with the values 1 and 3. graycomatrix continues processing the input image,
scanning the image for other pixel pairs (i,j) and recording the sums in the
corresponding elements of the GLCM.
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Process Used to Create the GLCM

Specifying the Offsets

By default, the graycomatrix function creates a single GLCM, with the
spatial relationship, or offset, defined as two horizontally adjacent pixels.
However, a single GLCM might not be enough to describe the textural features
of the input image. For example, a single horizontal offset might not be
sensitive to texture with a vertical orientation. For this reason, graycomatrix
can create multiple GLCMs for a single input image.
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To create multiple GLCMs, specify an array of offsets to the graycomatrix
function. These offsets define pixel relationships of varying direction and
distance. For example, you can define an array of offsets that specify four
directions (horizontal, vertical, and two diagonals) and four distances. In
this case, the input image is represented by 16 GLCMs. When you calculate
statistics from these GLCMs, you can take the average.

You specify these offsets as a p-by-2 array of integers. Each row in the array is
a two-element vector, [row_offset, col offset], that specifies one offset.
row_offset is the number of rows between the pixel of interest and its
neighbor. col_offset is the number of columns between the pixel of interest
and its neighbor. This example creates an offset that specifies four directions
and 4 distances for each direction. For more information about specifying
offsets, see the graycomatrix reference page.

offsets = [ 01; 02; 03; 0 4;...
-1 1; -2 2; -3 3; -4 4;...
-1 0; -20; -30; -40;...
-1 -1; -2 -2; -3 -3; -4 -4];

The figure illustrates the spatial relationships of pixels that are defined by
this array of offsets, where D represents the distance from the pixel of interest.

1357 [-0-0] o0 [-00] 45 [-0 0

i /; T
/

Pinel of interest - w | 0°[0D]

Deriving Statistics from a GLCM

After you create the GLCMs, you can derive several statistics from them
using the graycoprops function. These statistics provide information about
the texture of an image. The following table lists the statistics you can derive.
You specify the statistics you want when you call the graycoprops function.
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Statistic Description

Contrast Measures the local variations in the gray-level
co-occurrence matrix.

Correlation Measures the joint probability occurrence of the specified
pixel pairs.

Energy Provides the sum of squared elements in the GLCM. Also
known as uniformity or the angular second moment.

Homogeneity | Measures the closeness of the distribution of elements in

the GLCM to the GLCM diagonal.

Example: Plotting the Correlation
This example shows how to create a set of GLCMs and derive statistics from

them and illustrates how the statistics returned by graycoprops have a direct

relationship to the original input image.

1 Read in a grayscale image and display it. The example converts the
truecolor image to a grayscale image and then rotates it 90° for this

example.

circuitBoard = rot90(rgb2gray(imread( 'board.tif')));
imshow(circuitBoard)
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Define offsets of varying direction and distance. Because the image
contains objects of a variety of shapes and sizes that are arranged in
horizontal and vertical directions, the example specifies a set of horizontal
offsets that only vary in distance.

offsetsO = [zeros(40,1) (1:40)'];

Create the GLCMs. Call the graycomatrix function specifying the offsets.

glcms = graycomatrix(circuitBoard, 'Offset',offsets0)

Derive statistics from the GLCMs using the graycoprops function. The
example calculates the contrast and correlation.

stats = graycoprops(glcms, 'Contrast Correlation');

Plot correlation as a function of offset.

figure, plot([stats.Correlation]);

title('Texture Correlation as a function of offset');
xlabel('Horizontal Offset')

ylabel('Correlation')

Texture Comelation as a function of offsat
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The plot contains peaks at offsets 7, 15, 23, and 30. If you examine the input
image closely, you can see that certain vertical elements in the image have a
periodic pattern that repeats every seven pixels. The following figure shows
the upper left corner of the image and points out where this pattern occurs.

Repeoted seven-pixel——
puttern f
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Adjusting Pixel Intensity Values

In this section...

“Understanding Intensity Adjustment” on page 11-35
“Adjusting Intensity Values to a Specified Range” on page 11-36
“Adjusting Intensity Values Using Histogram Equalization” on page 11-40

“Adjusting Intensity Values Using Contrast-Limited Adaptive Histogram
Equalization” on page 11-42

“Enhancing Color Separation Using Decorrelation Stretching” on page 11-43

Understanding Intensity Adjustment

Image enhancement techniques are used to improve an image, where
“improve” is sometimes defined objectively (e.g., increase the signal-to-noise
ratio), and sometimes subjectively (e.g., make certain features easier to see by
modifying the colors or intensities).

Intensity adjustment is an image enhancement technique that maps an
image’s intensity values to a new range. To illustrate, this figure shows a
low-contrast image with its histogram. Notice in the histogram of the image
how all the values gather in the center of the range.

I = imread('pout.tif');

imshow(I)
figure, imhist(I,64)
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If you remap the data values to fill the entire intensity range [0, 255], you can
increase the contrast of the image.

The functions described in this section apply primarily to grayscale images.
However, some of these functions can be applied to color images as well.
For information about how these functions work with color images, see the
reference pages for the individual functions.

Adjusting Intensity Values to a Specified Range

You can adjust the intensity values in an image using the imadjust function,
where you specify the range of intensity values in the output image.

For example, this code increases the contrast in a low-contrast grayscale
image by remapping the data values to fill the entire intensity range [0, 255].

I = imread('pout.tif');
J = imadjust(I);
imshow(J)

figure, imhist(J,64)

This figure displays the adjusted image and its histogram. Notice the
increased contrast in the image, and that the histogram now fills the entire
range.
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Specifying the Adjustment Limits

You can optionally specify the range of the input values and the output values
using imadjust. You specify these ranges in two vectors that you pass to
imadjust as arguments. The first vector specifies the low- and high-intensity
values that you want to map. The second vector specifies the scale over which
you want to map them.

Note Note that you must specify the intensities as values between 0 and 1
regardless of the class of I. If I is uint8, the values you supply are multiplied
by 255 to determine the actual values to use; if I is uint16, the values are
multiplied by 65535. To learn about an alternative way to set these limits
automatically, see “Setting the Adjustment Limits Automatically” on page
11-38.

For example, you can decrease the contrast of an image by narrowing the
range of the data. In the example below, the man’s coat is too dark to reveal
any detail. imadjust maps the range [0,51] in the uint8 input image to
[128,255] in the output image. This brightens the image considerably, and
also widens the dynamic range of the dark portions of the original image,
making it much easier to see the details in the coat. Note, however, that
because all values above 51 in the original image are mapped to 255 (white) in
the adjusted image, the adjusted image appears washed out.
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I = imread('cameraman.tif');
J imadjust(I,[0 0.2],[0.5 1]);

imshow(I)
figure, imshow(J)

Image Courtesy of MIT

Image After Remapping and Widening the Dynamic Range

Setting the Adjustment Limits Automatically
To use imadjust, you must typically perform two steps:

1 View the histogram of the image to determine the intensity value limits.

2 Specify these limits as a fraction between 0.0 and 1.0 so that you can pass
them to imadjust in the [low_in high_in] vector.

For a more convenient way to specify these limits, use the stretchlim
function. (The imadjust function uses stretchlim for its simplest syntax,
imadjust(I).)

This function calculates the histogram of the image and determines the
adjustment limits automatically. The stretchlim function returns these
values as fractions in a vector that you can pass as the [low_in high_in]
argument to imadjust; for example:

I = imread('rice.png');
J imadjust(I,stretchlim(I),[0 1]);
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By default, stretchlim uses the intensity values that represent the bottom
1% (0.01) and the top 1% (0.99) of the range as the adjustment limits. By
trimming the extremes at both ends of the intensity range, stretchlim makes
more room in the adjusted dynamic range for the remaining intensities. But
you can specify other range limits as an argument to stretchlim. See the
stretchlim reference page for more information.

Gamma Correction

imadjust maps low to bottom, and high to top. By default, the values
between low and high are mapped linearly to values between bottom and
top. For example, the value halfway between low and high corresponds to the
value halfway between bottom and top.

imadjust can accept an additional argument that specifies the gamma
correction factor. Depending on the value of gamma, the mapping between
values in the input and output images might be nonlinear. For example, the
value halfway between low and high might map to a value either greater than
or less than the value halfway between bottom and top.

Gamma can be any value between 0 and infinity. If gamma is 1 (the default),
the mapping is linear. If gamma is less than 1, the mapping is weighted
toward higher (brighter) output values. If gamma is greater than 1, the
mapping is weighted toward lower (darker) output values.

The figure below illustrates this relationship. The three transformation curves
show how values are mapped when gamma is less than, equal to, and greater
than 1. (In each graph, the x-axis represents the intensity values in the input
image, and the y-axis represents the intensity values in the output image.)

vl v=1 vl

top top top 4

bottom bottom bottom 4

low high low high low high

Plots Showing Three Different Gamma Correction Settings
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The example below illustrates gamma correction. Notice that in the call to
imadjust, the data ranges of the input and output images are specified as
empty matrices. When you specify an empty matrix, imadjust uses the
default range of [0,1]. In the example, both ranges are left empty; this means
that gamma correction is applied without any other adjustment of the data.

[X,map] = imread('forest.tif');

I = ind2gray(X,map);
J = imadjust(I,[],[]1,0.5);
imshow(I)

figure, imshow(J)

Image Courtesy of Susan Cohen

Image Before and After Applying Gamma Correction

Adjusting Intensity Values Using Histogram
Equalization

The process of adjusting intensity values can be done automatically by the
histeq function. histeq performs histogram equalization, which involves
transforming the intensity values so that the histogram of the output image
approximately matches a specified histogram. (By default, histeq tries to
match a flat histogram with 64 bins, but you can specify a different histogram
instead; see the reference page for histeq.)

This example illustrates using histeq to adjust a grayscale image. The
original image has low contrast, with most values in the middle of the
intensity range. histeq produces an output image having values evenly
distributed throughout the range.

I = imread('pout.tif');
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J = histeq(I);
imshow(J)
figure, imhist(J,64)

T
1
280

histeq can return a 1-by-256 vector that shows, for each possible input value,
the resulting output value. (The values in this vector are in the range [0,1],
regardless of the class of the input image.) You can plot this data to get the
transformation curve. For example:

50 100 200

Image After Histogram Equalization with Its Histogram

I = imread('pout.tif');
[J,T] = histeq(I);
figure,plot((0:255)/255,T);
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Notice how this curve reflects the histograms in the previous figure, with
the input values mostly between 0.3 and 0.6, while the output values are
distributed evenly between 0 and 1.

Adjusting Intensity Values Using Contrast-Limited
Adaptive Histogram Equalization

As an alternative to using histeq, you can perform contrast-limited adaptive
histogram equalization (CLAHE) using the adapthisteq function. While
histeq works on the entire image, adapthisteq operates on small regions in
the image, called tiles. Each tile’s contrast is enhanced, so that the histogram
of the output region approximately matches a specified histogram. After
performing the equalization, adapthisteq combines neighboring tiles using
bilinear interpolation to eliminate artificially induced boundaries.
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To avoid amplifying any noise that might be present in the image, you can
use adapthisteq optional parameters to limit the contrast, especially in
homogeneous areas.

To illustrate, this example uses adapthisteq to adjust the contrast in a
grayscale image. The original image has low contrast, with most values in the
middle of the intensity range. adapthisteq produces an output image having
values evenly distributed throughout the range.

I = imread('pout.tif');
J adapthisteq(I);
imshow(J)

figure, imhist(J,64)

Image After CLAHE Equalization with Its Histogram

Enhancing Color Separation Using Decorrelation
Stretching

Decorrelation stretching enhances the color separation of an image

with significant band-band correlation. The exaggerated colors improve
visual interpretation and make feature discrimination easier. You apply
decorrelation stretching with the decorrstretch function. See “Adding a
Linear Contrast Stretch” on page 11-46 on how to add an optional linear
contrast stretch to the decorrelation stretch.
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The number of color bands, NBANDS, in the image is usually three. But you
can apply decorrelation stretching regardless of the number of color bands.

The original color values of the image are mapped to a new set of color values
with a wider range. The color intensities of each pixel are transformed into
the color eigenspace of the NBANDS-by-NBANDS covariance or correlation
matrix, stretched to equalize the band variances, then transformed back to
the original color bands.

To define the bandwise statistics, you can use the entire original image or,
with the subset option, any selected subset of it. See the decorrstretch
reference page.

Simple Decorrelation Stretching

You can apply decorrelation and stretching operations on the library of images
available in the imdemos directory. The library includes a LANDSAT image of
the Little Colorado River. In this example, you perform a simple decorrelation
stretch on this image:

1 The image has seven bands, but just read in the three visible colors:
A = multibandread('littlecoriver.lan', [512, 512, 7],

'uint8=>uint8', 128, 'bil', 'ieee-le',
{'Band', 'Direct',[3 2 1]});

2 Then perform the decorrelation stretch:

B = decorrstretch(A);

3 Now view the results:

imshow(A); figure; imshow(B)

Compare the two images. The original has a strong violet (red-bluish) tint,
while the transformed image has a somewhat expanded color range.
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Little Colorado River Before (left) and After (right) Decorrelation Stretch

A color band scatterplot of the images shows how the bands are decorrelated
and equalized:

rA = A(:,:,1); gA = A(:,:,2); bA = A(:,:,3);
figure, plot3(rA(:),gA(:),bA(:),"'."); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)');
zlabel('Blue (Band 1)")

rB = B(:,:,1); gB = B(:,:,2); bB = B(:,:,3);
figure, plot3(rB(:),gB(:),bB(:),"'."); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)');
zlabel('Blue (Band 1)")
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Color Scatterplot Before (left) and After (right) Decorrelation Stretch

Adding a Linear Contrast Stretch

Now try the same transformation, but with a linear contrast stretch applied
after the decorrelation stretch:

imshow(A); C = decorrstretch(A,'Tol',0.01); figure; imshow(C)

Compare the transformed image to the original.

Little Colorado River After Decorrelation Stretch Followed by Linear Contrast
Stretch
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Adding the linear contrast stretch enhances the resulting image by further
expanding the color range. In this case, the transformed color range is
mapped within each band to a normalized interval between 0.01 and 0.99,
saturating 2%.

See the stretchlim function reference page for more about Tol. Without the
Tol option, decorrstretch applies no linear contrast stretch.

Note You can apply a linear contrast stretch as a separate operation after
performing a decorrelation stretch, using stretchlim and imadjust. This
alternative, however, often gives inferior results for uint8 and uint16 images,
because the pixel values must be clamped to [0 255] (or [0 65535]). The Tol
option in decorrstretch circumvents this limitation.
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Removing Noise from Images

In this section...

“Understanding Sources of Noise in Digital Images” on page 11-48
“Removing Noise By Linear Filtering” on page 11-48
“Removing Noise By Median Filtering” on page 11-49

“Removing Noise By Adaptive Filtering” on page 11-52

Understanding Sources of Noise in Digital Images

Digital images are prone to a variety of types of noise. Noise is the result
of errors in the image acquisition process that result in pixel values that
do not reflect the true intensities of the real scene. There are several ways
that noise can be introduced into an image, depending on how the image is
created. For example:

¢ Ifthe image is scanned from a photograph made on film, the film grain is
a source of noise. Noise can also be the result of damage to the film, or
be introduced by the scanner itself.

¢ If the image is acquired directly in a digital format, the mechanism for
gathering the data (such as a CCD detector) can introduce noise.

¢ Electronic transmission of image data can introduce noise.

To simulate the effects of some of the problems listed above, the toolbox
provides the imnoise function, which you can use to add various types of
noise to an image. The examples in this section use this function.

Removing Noise By Linear Filtering

You can use linear filtering to remove certain types of noise. Certain filters,
such as averaging or Gaussian filters, are appropriate for this purpose.
For example, an averaging filter is useful for removing grain noise from a
photograph. Because each pixel gets set to the average of the pixels in its
neighborhood, local variations caused by grain are reduced.
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See “Designing and Implementing Linear Filters in the Spatial Domain” on
page 8-2 for more information about linear filtering using imfilter.

Removing Noise By Median Filtering

Median filtering is similar to using an averaging filter, in that each output
pixel is set to an average of the pixel values in the neighborhood of the
corresponding input pixel. However, with median filtering, the value of an
output pixel is determined by the median of the neighborhood pixels, rather
than the mean. The median is much less sensitive than the mean to extreme
values (called outliers). Median filtering is therefore better able to remove
these outliers without reducing the sharpness of the image. The medfilt2
function implements median filtering.

Note Median filtering is a specific case of order-statistic filtering, also known
as rank filtering. For information about order-statistic filtering, see the
reference page for the ordfilt2 function.

The following example compares using an averaging filter and medfilt2 to
remove salt and pepper noise. This type of noise consists of random pixels’
being set to black or white (the extremes of the data range). In both cases the
size of the neighborhood used for filtering is 3-by-3.

1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)
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2 Add noise to it.

J = imnoise(I, 'salt & pepper',0.02);
figure, imshow(J)

3 Filter the noisy image with an averaging filter and display the results.

K = filter2(fspecial('average',3),J)/255;
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figure, imshow(K)

4 Now use a median filter to filter the noisy image and display the results.
Notice that medfilt2 does a better job of removing noise, with less blurring
of edges.

L = medfilt2(J,[3 3]);
figure, imshow(L)
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Removing Noise By Adaptive Filtering

The wiener2 function applies a Wiener filter (a type of linear filter) to an
image adaptively, tailoring itself to the local image variance. Where the
variance is large, wiener2 performs little smoothing. Where the variance is
small, wiener2 performs more smoothing.

This approach often produces better results than linear filtering. The
adaptive filter is more selective than a comparable linear filter, preserving
edges and other high-frequency parts of an image. In addition, there are no
design tasks; the wiener2 function handles all preliminary computations and
implements the filter for an input image. wiener2, however, does require
more computation time than linear filtering.

wiener2 works best when the noise is constant-power (“white”) additive noise,
such as Gaussian noise. The example below applies wiener2 to an image of
Saturn that has had Gaussian noise added.

1 Read in an image. Because the image is a truecolor image, the example
converts it to grayscale.

RGB = imread('saturn.png');
I = rgb2gray(RGB);

2 The example then add Gaussian noise to the image and then displays the
image. Because the image is quite large, the figure only shows a portion
of the image.

J = imnoise(I, 'gaussian',0,0.025);
imshow(J)
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Portion of the Image with Added Gaussian Noise

3 Remove the noise, using the wiener2 function. Again, the figure only shows
a portion of the image

K = wiener2(J,[5 5]);
figure, imshow(K)

Portion of the Image with Noise Removed by Wiener Filter
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ROI-Based Processing

This chapter describes how to define a region of interest (ROI) and perform

processing on the ROI you define.

Specifying a Region of Interest (ROI)
(p. 12-2)

Filtering an ROI (p. 12-6)

Filling an ROI (p. 12-9)

Describes how to specify a
region-of-interest (ROI).

Describes how to apply a filter to a
region using the roifilt2 function

Describes how to fill a region of
interest using the roifill function
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Specifying a Region of Interest (ROI)

In this section...

“Overview of ROI Processing” on page 12-2

“Selecting a Polygonal ROI Interactively” on page 12-2
“Specifying an ROI Noninteractively” on page 12-4

“Creating an ROI Without an Associated Image” on page 12-5

“Creating an ROI Based on Color Values” on page 12-5

Overview of ROI Processing

A region of interest (ROI) is a portion of an image that you want to filter or
perform some other operation on. You define an ROI by creating a binary
mask, which is a binary image that is the same size as the image you want to
process with pixels that define the ROI set to 1 and all other pixels set to 0.

You can define more than one ROI in an image. The regions can be geographic
in nature, such as polygons that encompass contiguous pixels, or they can

be defined by a range of intensities. In the latter case, the pixels are not
necessarily contiguous.

Note This section describes how to create binary masks to define ROIs.
However, any binary image can be used as a mask, provided that the binary
image is the same size as the image being filtered. For example, suppose
you want to filter the grayscale image I, filtering only those pixels whose
values are greater than 0.5. You can create the appropriate mask with this
command: BW = (I > 0.5).

Selecting a Polygonal ROI Interactively

You can use the roipoly function to specify a polygonal ROI interactively in
a particular image. To do this, display an image, using imshow, and then
call roipoly with no input arguments. When you move the pointer over the

image displayed in the current axes, the pointer changes to cross hairs —I_ .
You specify the vertices of the polygon by clicking points in the image with
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the mouse. When you are done selecting vertices, you can adjust the size and
position of the ROI using the mouse. To complete the operation, double-click
or right-click inside the ROI and select Create Mask. roipoly returns a
binary image the same size as the input image, containing 1’s inside the
specified polygon, and 0’s everywhere else.

The example below illustrates this interactive syntax of roipoly.

I = imread('pout.tif');
imshow(1I)
BW = roipoly;

ROl rectangle
(being defined)

ROI tool
pointer

Defining a Polygonal Region of Interest Selected Using roipoly

When you are satisfied with the size and position of the ROI, double-click to
create the binary mask image, shown in the following figure.

imshow (BW)
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Binary Mask Created for the Region Shown in the Preceding Figure

Specifying an ROI Noninteractively

Using roipoly interactively provides an easy way to create a binary mask
associated with a particular image. However, you can also use roipoly to
create a binary mask noninteractively by specifying the x- and y-coordinates
of the vertices of the ROI in two vectors.

The example below illustrates using roipoly to create a binary mask of the
same region as shown in “Selecting a Polygonal ROI Interactively” on page
12-2.

I imread('pout.tif');
c [1283 123 170 170];
r=[160 210 210 160];
BW = roipoly(I,c,r);
imshow (BW)

You can also create a binary mask without using an existing image by calling
the poly2mask function — see “Creating an ROI Without an Associated
Image” on page 12-5.
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Creating an ROl Without an Associated Image

Using roipoly you can create a binary mask that defines an ROI associated
with a particular image. To create a binary mask without having an
associated image, use the poly2mask function. Unlike the roipoly function,
poly2mask does not require an input image. You specify the vertices of the
ROI in two vectors and specify the size of the binary mask returned. For
example, the following creates a binary mask that can be used to filter an
ROI in the pout.tif image.

c [123 123 170 170];

r = 1[160 210 210 160];

m = 291; % height of pout image
n = 240; % width of pout image
BW = poly2mask(c,r,m,n);

figure, imshow(BW)

Creating an ROI Based on Color Values

You can use the roicolor function to define an ROI based on color or intensity
range. For more information, see the reference page for roicolor.
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Filtering an

12-6

ROI

In this section...

“Overview of ROI Filtering” on page 12-6

“Filtering a Region in an Image” on page 12-7

“Specifying the Filtering Operation” on page 12-8

Overview of ROI Filtering

Filtering a region of interest (ROI) is the process of applying a filter to a
region in an image, where a binary mask defines the region. For example, you
can apply an intensity adjustment filter to certain regions of an image.

To filter an ROI in an image, use the roifilt2 function. When you call
roifilt2, you specify:

® Input grayscale image to be filtered

¢ Binary mask image that defines the ROI

e Filter, either a 2-D filter or function

roifilt2 filters the input image and returns an image that consists of
filtered values for pixels where the binary mask contains 1’s and unfiltered

values for pixels where the binary mask contains 0’s. This type of operation
is called masked filtering. .

Note roifilt2 is best suited for operations that return data in the same
range as in the original image, because the output image takes some of its
data directly from the input image. Certain filtering operations can result
in values outside the normal image data range (i.e., [0,1] for images of class
double, [0,255] for images of class uint8, and [0,65535] for images of class
uint16). For more information, see the reference page for roifilt2.
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Filtering a Region in an Image
This example uses masked filtering to increase the contrast of a specific
region of an image:

1 Read in the image.
I = imread('pout.tif');
2 Create the mask.
This example uses the mask BW created in “Selecting a Polygonal ROI
Interactively” on page 12-2. The region of interest specified by the mask is
the logo on the girl’s jacket.
3 Use fspecial to create the filter.

h = fspecial('unsharp');

4 Call roifilt2, specifying the filter, the image to be filtered, and the mask.

I2 = roifilt2(h,I,BW);
imshow(I)
figure, imshow(I2)

Image Before and After Using an Unsharp Filter on the Region of Interest
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Specifying the Filtering Operation
roifilt2 also enables you to specify your own function to operate on the ROI.
This example uses the imadjust function to lighten parts of an image:

1 Read in the image.

I = imread('cameraman.tif');

2 Create the mask. In this example, the mask is a binary image containing
text. The mask image must be cropped to be the same size as the image to
be filtered.

BW = imread('text.png');
mask = BW(1:256,1:256);

3 Create the function you want to use as a filter.

f = @(x) imadjust(x,[]1,[1,0.3);

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.
The resulting image, 12, has the text imprinted on it.

I2 = roifilt2(I,mask,f);
imshow(I2)

Image Brightened Using a Binary Mask Containing Text



Filling an ROI

Filing an ROI

Filling is a process that fills a region of interest (ROI) by interpolating the
pixel values from the borders of the region. This process can be used to make
objects in an image seem to disappear as they are replaced with values that
blend in with the background area.

To fill an ROI, you can use the roifill function. This function is useful for
image editing, including removal of extraneous details or artifacts.

roifill performs the fill operation using an interpolation method based on
Laplace’s equation. This method results in the smoothest possible fill, given
the values on the boundary of the region.

As with roipoly, you select the region of interest with the mouse. When
you complete the selection, roifill returns an image with the selected ROI
filled in.

This example shows how to use roifill to fill an ROI in an image.

1 Read an image into the MATLAB® workspace and display it. Because the
image is an indexed image, the example uses ind2gray to convert it to a
grayscale image.

load trees
I = ind2gray(X,map);
imshow(I)

2 Call roifill to specify the ROI you want to fill. When you move the pointer

over the image, the pointer shape changes to cross hairs —|_ . Define the
ROI by clicking the mouse to specify the vertices of a polygon. You can use
the mouse to adjust the size and position of the ROL.

I2 = roifill;
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3 Perform the fill operation. Double-click inside the ROI or right-click and
select Fill Area. roifill returns the modified image in I2. View the
output image to see how roifill filled in the area defined by the ROI.

imshow(I2)

ey
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Image Deblurring

This chapter describes how to deblur an image using the toolbox deblurring

functions.

Understanding Deblurring (p. 13-2)

Deblurring with the Wiener Filter
(p. 13-6)

Deblurring with a Regularized Filter
(p. 13-8)

Deblurring with the
Lucy-Richardson Algorithm
(p. 13-10)

Deblurring with the Blind
Deconvolution Algorithm (p. 13-16)

Creating Your Own Deblurring
Functions (p. 13-23)

Avoiding Ringing in Deblurred
Images (p. 13-24)

Defines deblurring and
deconvolution

Using the deconvwnr function

Using the deconvreg function

Using the deconvlucy function

Using the deconvblind function

Using the otf2psf and psf2otf
functions

Using the edgetaper function to
avoid "ringing" in deblurred images
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Understanding Deblurring

13-2

In this section...

“Causes of Blurring” on page 13-2
“Deblurring Model” on page 13-2

“Deblurring Functions” on page 13-4

Causes of Blurring
The blurring, or degradation, of an image can be caused by many factors:

® Movement during the image capture process, by the camera or, when long

exposure times are used, by the subject

® Qut-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a

short exposure time, which reduces the number of photons captured

¢ Scattered light distortion in confocal microscopy

Deblurring Model

A blurred or degraded image can be approximately described by this equation
g = Hf + n, where

g The blurred image

H The distortion operator, also called the point spread function (PSF).
In the spatial domain, the PSF describes the degree to which an
optical system blurs (spreads) a point of light. The PSF is the
inverse Fourier transform of the optical transfer function (OTF). In
the frequency domain, the OTF describes the response of a linear,
position-invariant system to an impulse. The OTF is the Fourier
transform of the point spread function (PSF). The distortion operator,
when convolved with the image, creates the distortion. Distortion
caused by a point spread function is just one type of distortion.

f The original true image
n Additive noise, introduced during image acquisition, that corrupts
the image
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Note The image f really doesn’t exist. This image represents what you would
have if you had perfect image acquisition conditions.

Importance of the PSF

Based on this model, the fundamental task of deblurring is to deconvolve
the blurred image with the PSF that exactly describes the distortion.
Deconvolution is the process of reversing the effect of convolution.

Note The quality of the deblurred image is mainly determined by knowledge
of the PSF.

To illustrate, this example takes a clear image and deliberately blurs it by
convolving it with a PSF. The example uses the fspecial function to create a
PSF that simulates a motion blur, specifying the length of the blur in pixels,
(LEN=31), and the angle of the blur in degrees (THETA=11). Once the PSF

is created, the example uses the imfilter function to convolve the PSF
with the original image, I, to create the blurred image, Blurred. (To see
how deblurring is the reverse of this process, using the same images, see
“Deblurring with the Wiener Filter” on page 13-6.)

I imread('peppers.png');
I I(60+[1:256],222+[1:256],:); % crop the image
figure; imshow(I); title('Original Image');
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LEN = 31;

THETA = 11;

PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF, 'circular','conv');
figure; imshow(Blurred); title('Blurred Image');

Deblurring Functions

The toolbox includes four deblurring functions, listed here in order of
complexity. All the functions accept a PSF and the blurred image as their
primary arguments.

deconvwnr Implements a least squares solution. You should provide
some information about the noise to reduce possible noise
amplification during deblurring. See “Deblurring with the
Wiener Filter” on page 13-6 for more information.

deconvreg Implements a constrained least squares solution, where you
can place constraints on the output image (the smoothness
requirement is the default). You should provide some
information about the noise to reduce possible noise
amplification during deblurring. See “Deblurring with a
Regularized Filter” on page 13-8 for more information.
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deconvlucy | Implements an accelerated, damped Lucy-Richardson
algorithm. This function performs multiple iterations, using
optimization techniques and Poisson statistics. You do not
need to provide information about the additive noise in the
corrupted image. See “Deblurring with the Lucy-Richardson
Algorithm” on page 13-10 for more information.

deconvblind | Implements the blind deconvolution algorithm, which
performs deblurring without knowledge of the PSF. You
pass as an argument your initial guess at the PSF. The
deconvblind function returns a restored PSF in addition
to the restored image. The implementation uses the same
damping and iterative model as the deconvlucy function.
See “Deblurring with the Blind Deconvolution Algorithm”
on page 13-16 for more information.

When using the deblurring functions, note the following:

¢ Deblurring is an iterative process. You might need to repeat the deblurring
process multiple times, varying the parameters you specify to the
deblurring functions with each iteration, until you achieve an image that,
based on the limits of your information, is the best approximation of the
original scene. Along the way, you must make numerous judgments about
whether newly uncovered features in the image are features of the original
scene or simply artifacts of the deblurring process.

¢ To avoid "ringing" in a deblurred image, you can use the edgetaper
function to preprocess your image before passing it to the deblurring
functions. See “Avoiding Ringing in Deblurred Images” on page 13-24 for
more information.

¢ For information about creating your own deblurring functions, see
“Creating Your Own Deblurring Functions” on page 13-23.
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Deblurring with the Wiener Filter

Use the deconvwnr function to deblur an image using the Wiener filter. Wiener
deconvolution can be used effectively when the frequency characteristics of
the image and additive noise are known, to at least some degree. In the
absence of noise, the Wiener filter reduces to the ideal inverse filter.

This example deblurs the blurred image created in “Deblurring Model” on
page 13-2, specifying the same PSF function that was used to create the blur.
This example illustrates the importance of knowing the PSF, the function that
caused the blur. When you know the exact PSF, the results of deblurring

can be quite effective.

1 Read an image into the MATLAB® workspace. (To speed the deblurring
operation, the example also crops the image.)

I imread('peppers.png');
I I(10+[1:256],222+[1:256],:);
figure;imshow(I);title('Original Image');

2 Create a PSF.
LEN = 31;

THETA = 11;
PSF = fspecial('motion',LEN,THETA);

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF, 'circular','conv');
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figure; imshow(Blurred);title('Blurred Image');

4 Deblur the image.

wnr1 = deconvwnr(Blurred,PSF);
figure;imshow(wnrt);
title('Restored, True PSF');

Refining the Result

You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvwnr function. Using these arguments you
can specify the noise-to-signal power value and/or provide autocorrelation
functions to help refine the result of deblurring. To see the impact of these
optional arguments, view the Image Processing Toolbox™ deblurring demos.
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Deblurring with a Regularized Filter

Use the deconvreg function to deblur an image using a regularized filter. A
regularized filter can be used effectively when limited information is known
about the additive noise.

To illustrate, this example simulates a blurred image by convolving a
Gaussian filter PSF with an image (using imfilter). Additive noise in the
image is simulated by adding Gaussian noise of variance V to the blurred
image (using imnoise):

1 Read an image into the MATLAB® workspace. The example uses cropping
to reduce the size of the image to be deblurred. This is not a required step
in deblurring operations.

I = imread('tissue.png');
I = I(125+[1:256],1:256,:);
figure; imshow(I); title('Original Image');

Image Courtesy Alan W. Partin
2 Create the PSF.
PSF = fspecial('gaussian',11,5);
3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF, 'conv');

V = .02;
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BlurredNoisy = imnoise(Blurred, 'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');

4 Use deconvreg to deblur the image, specifying the PSF used to create the
blur and the noise power, NP.

NP = V*prod(size(I));
[reg1l LAGRA] = deconvreg(BlurredNoisy,PSF,NP);
figure,imshow(regi),title('Restored Image');

TPV
e
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Refining the Result

You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvreg function. Using these arguments you
can specify the noise power value, the range over which deconvreg should
iterate as it converges on the optimal solution, and the regularization operator
to constrain the deconvolution. To see the impact of these optional arguments,
view the Image Processing Toolbox™ deblurring demos.

-

.
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Deblurring with the Lucy-Richardson Algorithm

In this section...

“Overview” on page 13-10

“Reducing the Effect of Noise Amplification” on page 13-10
“Accounting for Nonuniform Image Quality” on page 13-11
“Handling Camera Read-Out Noise” on page 13-11
“Handling Undersampled Images” on page 13-12

“Example: Using the deconvlucy Function to Deblur an Image” on page
13-12

“Refining the Result” on page 13-15

Overview

Use the deconvlucy function to deblur an image using the accelerated,
damped, Lucy-Richardson algorithm. The algorithm maximizes the likelihood
that the resulting image, when convolved with the PSF, is an instance of

the blurred image, assuming Poisson noise statistics. This function can be
effective when you know the PSF but know little about the additive noise

in the image.

The deconvlucy function implements several adaptations to the original
Lucy-Richardson maximum likelihood algorithm that address complex image
restoration tasks.

Reducing the Effect of Noise Amplification

Noise amplification is a common problem of maximum likelihood methods
that attempt to fit data as closely as possible. After many iterations, the
restored image can have a speckled appearance, especially for a smooth
object observed at low signal-to-noise ratios. These speckles do not represent
any real structure in the image, but are artifacts of fitting the noise in the
image too closely.

To control noise amplification, the deconvlucy function uses a damping
parameter, DAMPAR. This parameter specifies the threshold level for the
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deviation of the resulting image from the original image, below which
damping occurs. For pixels that deviate in the vicinity of their original values,
iterations are suppressed.

Damping is also used to reduce ringing, the appearance of high-frequency
structures in a restored image. Ringing is not necessarily the result of noise
amplification. See “Avoiding Ringing in Deblurred Images” on page 13-24
for more information.

Accounting for Nonuniform Image Quality

Another complication of real-life image restoration is that the data might
include bad pixels, or that the quality of the receiving pixels might vary
with time and position. By specifying the WEIGHT array parameter with
the deconvlucy function, you can specify that certain pixels in the image
be ignored. To ignore a pixel, assign a weight of zero to the element in the
WEIGHT array that corresponds to the pixel in the image.

The algorithm converges on predicted values for the bad pixels based on

the information from neighborhood pixels. The variation in the detector
response from pixel to pixel (the so-called flat-field correction) can also be
accommodated by the WEIGHT array. Instead of assigning a weight of 1.0 to the
good pixels, you can specify fractional values and weight the pixels according
to the amount of the flat-field correction.

Handling Camera Read-Out Noise
Noise in charge coupled device (CCD) detectors has two primary components:

¢ Photon counting noise with a Poisson distribution
® Read-out noise with a Gaussian distribution
The Lucy-Richardson iterations intrinsically account for the first type of noise.

You must account for the second type of noise; otherwise, it can cause pixels
with low levels of incident photons to have negative values.

The deconvlucy function uses the READOUT input parameter to handle

camera read-out noise. The value of this parameter is typically the sum of
the read-out noise variance and the background noise (e.g., number of counts
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13-12

from the background radiation). The value of the READOUT parameter specifies
an offset that ensures that all values are positive.

Handling Undersampled Images

The restoration of undersampled data can be improved significantly if it is
done on a finer grid. The deconvlucy function uses the SUBSMPL parameter to
specify the subsampling rate, if the PSF is known to have a higher resolution.

If the undersampled data is the result of camera pixel binning during image
acquisition, the PSF observed at each pixel rate can serve as a finer grid PSF.
Otherwise, the PSF can be obtained via observations taken at subpixel offsets
or via optical modeling techniques. This method is especially effective for
images of stars (high signal-to-noise ratio), because the stars are effectively
forced to be in the center of a pixel. If a star is centered between pixels, it is
restored as a combination of the neighboring pixels. A finer grid redirects the
consequent spreading of the star flux back to the center of the star’s image.

Example: Using the deconvlucy Function to Deblur
an Image

To illustrate a simple use of deconvlucy, this example simulates a blurred,
noisy image by convolving a Gaussian filter PSF with an image (using
imfilter) and then adding Gaussian noise of variance V to the blurred image
(using imnoise):

1 Read an image into the MATLAB® workspace. (The example uses cropping
to reduce the size of the image to be deblurred. This is not a required step
in deblurring operations.)

I = imread('board.tif');
I = I(50+[1:256],2+[1:256],:);
figure;imshow(I);title('Original Image');
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2 Create the PSF.
PSF = fspecial('gaussian',5,5);

3 Create a simulated blur in the image and add noise.
Blurred = imfilter(I,PSF, 'symmetric', 'conv');

V = .002;

BlurredNoisy = imnoise(Blurred, 'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');
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4 Use deconvlucy to restore the blurred and noisy image, specifying the
PSF used to create the blur, and limiting the number of iterations to 5
(the default is 10).

Note The deconvlucy function can return values in the output image that
are beyond the range of the input image.

luc1 = deconvlucy(BlurredNoisy,PSF,5);
figure; imshow(luct);
title('Restored Image');
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Refining the Result

The deconvlucy function, by default, performs multiple iterations of the
deblurring process. You can stop the processing after a certain number of
iterations to check the result, and then restart the iterations from the point
where processing stopped. To do this, pass in the input image as a cell
array, for example, {BlurredNoisy}. The deconvlucy function returns the
output image as a cell array that you can then pass as an input argument to
deconvlucy to restart the deconvolution.

The output cell array contains these four elements:

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know where
to restart the process

The deconvlucy function supports several other optional arguments you

can use to achieve the best possible result, such as specifying a damping
parameter to handle additive noise in the blurred image. To see the impact of
these optional arguments, view the Image Processing Toolbox™ deblurring
demos.
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Deblurring with the Blind Deconvolution Algorithm

Use the deconvblind function to deblur an image using the blind
deconvolution algorithm. The algorithm maximizes the likelihood that the
resulting image, when convolved with the resulting PSF, is an instance of the
blurred image, assuming Poisson noise statistics. The blind deconvolution
algorithm can be used effectively when no information about the distortion
(blurring and noise) is known. The deconvblind function restores the
image and the PSF simultaneously, using an iterative process similar to the
accelerated, damped Lucy-Richardson algorithm.

The deconvblind function, just like the deconvlucy function, implements
several adaptations to the original Lucy-Richardson maximum likelihood
algorithm that address complex image restoration tasks. Using these
adaptations, you can

® Reduce the effect of noise on the restoration
¢ Account for nonuniform image quality (e.g., bad pixels)

e Handle camera read-out noise

For more information about these adaptations, see “Deblurring with the
Lucy-Richardson Algorithm” on page 13-10. In addition, the deconvblind
function supports PSF constraints that can be passed in through a
user-specified function.

Example: Using the deconvblind Function to Deblur
an Image

To illustrate blind deconvolution, this example creates a simulated blurred
image and then uses deconvblind to deblur it. The example makes two passes
at deblurring the image to show the effect of certain optional parameters

on the deblurring operation:
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1 Read an image into the MATLAB® workspace.

I = imread('cameraman.tif');
figure; imshow(I); title('Original Image');

Image Caurfesyof NIT

2 Create the PSF.

PSF = fspecial('motion',13,45);
figure; imshow(PSF,[], 'notruesize'); title('Original PSF');

Original PSF

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circ', 'conv');
figure; imshow(Blurred); title('Blurred Image');
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4 Deblur the image, making an initial guess at the size of the PSF.

To determine the size of the PSF, examine the blurred image and measure
the width of a blur (in pixels) around an obviously sharp object. In the
sample blurred image, you can measure the blur near the contour of the
man’s sleeve. Because the size of the PSF is more important than the values
it contains, you can typically specify an array of 1’s as the initial PSF.

The following figure shows a restoration where the initial guess at the PSF
is the same size as the PSF that caused the blur. In a real application, you
might need to rerun deconvblind, experimenting with PSFs of different
sizes, until you achieve a satisfactory result. The restored PSF returned by
each deconvolution can also provide valuable hints at the optimal PSF size.
See the Image Processing Toolbox™ deblurring demos for an example.

INITPSF = ones(size(PSF));

[J P]= deconvblind(Blurred,INITPSF,30);
figure; imshow(J); title('Restored Image');
figure; imshow(P,[], 'notruesize');
title('Restored PSF');
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Restored Image Restored PSF

Although deconvblind was able to deblur the image to a great extent, the
ringing around the sharp intensity contrast areas in the restored image

is unsatisfactory. (The example eliminated edge-related ringing by using
the 'circular' option with imfilter when creating the simulated blurred
image in step 3.)

The next steps in the example repeat the deblurring process, attempting to
achieve a better result by

¢ Eliminating high-contrast areas from the processing

¢ Specifying a better PSF

Create a WEIGHT array to exclude areas of high contrast from the deblurring
operation. This can reduce contrast-related ringing in the result.

To exclude a pixel from processing, you create an array of the same size as
the original image, and assign the value 0 to the pixels in the array that
correspond to pixels in the original image that you want to exclude from
processing. (See “Accounting for Nonuniform Image Quality” on page 13-11
for information about WEIGHT arrays.)

To create a WEIGHT array, the example uses a combination of edge detection
and morphological processing to detect high-contrast areas in the image.
Because the blur in the image is linear, the example dilates the image
twice. (For more information about using these functions, see Chapter

10, “Morphological Operations”.) To exclude the image boundary pixels (a
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high-contrast area) from processing, the example uses padarray to assign
the value 0 to all border pixels.

WEIGHT = edge(I, 'sobel',.28);

sel = strel('disk',1);

se2 = strel('line',13,45);

WEIGHT = ~imdilate (WEIGHT,[sel1 se2]);

WEIGHT = padarray(WEIGHT(2:end-1,2:end-1),[2 2]);
figure; imshow(WEIGHT); title('Weight Array');

s
s 1

Weight Array

6 Refine the guess at the PSF. The reconstructed PSF P returned by the first
pass at deconvolution shows a clear linearity, as shown in the figure in step
4. For the second pass, the example uses a new PSF, P1, which is the same
as the restored PSF but with the small amplitude pixels set to 0.

P1 = P;
P1(find(P1 < 0.01))=0;

7 Rerun the deconvolution, specifying the WEIGHT array and the modified
PSF. Note how the restored image has much less ringing around the sharp
intensity contrast areas than the result of the first pass (step 4).

[J2 P2] = deconvblind(Blurred,P1,50,[],WEIGHT);
figure; imshow(J2);

title('Newly Deblurred Image');

figure; imshow(P2,[], 'notruesize');
title('Newly Reconstructed PSF');
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ewly Deblurred Image Newly Reconstructed PSF

Refining the Result

The deconvblind function, by default, performs multiple iterations of the
deblurring process. You can stop the processing after a certain number

of iterations to check the result, and then restart the iterations from the
point where processing stopped. To use this feature, you must pass in both
the blurred image and the PSF as cell arrays, for example, {Blurred} and

{INITPSF}.

The deconvblind function returns the output image and the restored PSF as
cell arrays. The output image cell array contains these four elements:

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know where

to restart the process
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The PSF output cell array contains similar elements.

The deconvblind function supports several other optional arguments you
can use to achieve the best possible result, such as specifying a damping
parameter to handle additive noise in the blurred image. To see the impact
of these optional arguments, as well as the functional option that allows you
to place additional constraints on the PSF reconstruction, see the Image
Processing Toolbox deblurring demos.



Creating Your Own Deblurring Functions

Creating Your Own Deblurring Functions

All the toolbox deblurring functions perform deconvolution in the frequency
domain, where the process becomes a simple matrix multiplication. To work
in the frequency domain, the deblurring functions must convert the PSF you
provide into an optical transfer function (OTF), using the psf2otf function.
The toolbox also provides a function to convert an OTF into a PSF, otf2psf.
The toolbox makes these functions available in case you want to create your
own deblurring functions. (In addition, to aid this conversion between PSF's
and OTFs, the toolbox also makes the padding function padarray available.)
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Avoiding Ringing in Deblurred Images

The discrete Fourier transform (DFT), used by the deblurring functions,
assumes that the frequency pattern of an image is periodic. This assumption
creates a high-frequency drop-off at the edges of images. In the figure, the
shaded area represents the actual extent of the image; the unshaded area
represents the assumed periodicity.

A
High-frequency drop-uff
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This high-frequency drop-off can create an effect called boundary related
ringing in deblurred images. In this figure, note the horizontal and vertical
patterns in the image.
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To avoid ringing, use the edgetaper function to preprocess your images
before passing them to the deblurring functions. The edgetaper function
removes the high-frequency drop-off at the edge of an image by blurring
the entire image and then replacing the center pixels of the blurred image
with the original image. In this way, the edges of the image taper off to a
lower frequency.

13-24



Color

This chapter describes the toolbox functions that help you work with color
image data. Note that “color” includes shades of gray; therefore much of the
discussion in this chapter applies to grayscale images as well as color images.

Displaying Colors (p. 14-2)

Reducing the Number of Colors in
an Image (p. 14-4)

Converting Color Data Between
Color Spaces (p. 14-13)

Describes how to determine the
screen bit depth of your system and
provides recommendations if you can
change the bit depth

Describes how to use imapprox
and rgb2ind to reduce the number
of colors in an image, including
information about dithering

Defines the concept of image color
space and describes how to convert
images between color spaces
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Displaying Colors

The number of bits per screen pixel determines the display’s screen bit depth.
The screen bit depth determines the screen color resolution, which is how
many distinct colors the display can produce.

Most computer displays use 8, 16, or 24 bits per screen pixel. Depending on
your system, you might be able to choose the screen bit depth you want to use.
In general, 24-bit display mode produces the best results. If you need to use a
lower screen bit depth, 16-bit is generally preferable to 8-bit. However, keep
in mind that a 16-bit display has certain limitations, such as

* An image might have finer gradations of color than a 16-bit display
can represent. If a color is unavailable, MATLAB® uses the closest
approximation.

¢ There are only 32 shades of gray available. If you are working primarily
with grayscale images, you might get better display results using 8-bit
display mode, which provides up to 256 shades of gray.

To determine the bit depth of your system’s screen, enter this command at
the MATLAB prompt.

get (0, 'ScreenDepth')
ans =

32
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The integer MATLAB returns represents the number of bits per screen pixel:

Value Screen Bit Depth

8 8-bit displays support 256 colors. An 8-bit display can produce
any of the colors available on a 24-bit display, but only 256
distinct colors can appear at one time. (There are 256 shades
of gray available, but if all 256 shades of gray are used, they
take up all the available color slots.)

16 16-bit displays usually use 5 bits for each color component,
resulting in 32 (i.e., 25) levels each of red, green, and blue.
This supports 32,768 (i.e., 21%) distinct colors (of which 32 are
shades of gray). Some systems use the extra bit to increase
the number of levels of green that can be displayed. In this
case, the number of different colors supported by a 16-bit
display is actually 64,536 (i.e. 216).

24 24-bit displays use 8 bits for each of the three color
components, resulting in 256 (i.e., 28) levels each of red, green,
and blue. This supports 16,777,216 (i.e., 224) different colors.
(Of these colors, 256 are shades of gray. Shades of gray occur
where R=G=B.) The 16 million possible colors supported by
24-bit display can render a lifelike image.

32 32-bit displays use 24 bits to store color information and
use the remaining 8 bits to store transparency data (alpha
channel). For information about how MATLAB supports
the alpha channel, see the section “Transparency” in the
MATLAB 3-D Visualization documentation.

Regardless of the number of colors your system can display, MATLAB can
store and process images with very high bit depths: 224 colors for uint8 RGB
images, 2*8 colors for uint16 RGB images, and 2'%° for double RGB images.
These images are displayed best on systems with 24-bit color, but usually
look fine on 16-bit systems as well. (For additional information about how
MATLAB handles color, see the graphics documentation.) For information
about reducing the number of colors used by an image, see “Reducing the
Number of Colors in an Image” on page 14-4.
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Reducing the Number of Colors in an Image

In this section...

“Reducing Colors Using Color Approximation” on page 14-4
“Reducing Colors Using imapprox” on page 14-10

“Dithering” on page 14-11

Reducing Colors Using Color Approximation

On systems with 24-bit color displays, truecolor images can display up to
16,777,216 (i.e., 22%) colors. On systems with lower screen bit depths, truecolor
images are still displayed reasonably well, because MATLAB® automatically
uses color approximation and dithering if needed. Color approximation is the
process by which the software chooses replacement colors in the event that
direct matches cannot be found.

Indexed images, however, might cause problems if they have a large number
of colors. In general, you should limit indexed images to 256 colors for the
following reasons:

® On systems with 8-bit display, indexed images with more than 256 colors
will need to be dithered or mapped and, therefore, might not display well.

® On some platforms, colormaps cannot exceed 256 entries.

¢ If an indexed image has more than 256 colors, MATLAB cannot store the
image data in a uint8 array, but generally uses an array of class double
instead, making the storage size of the image much larger (each pixel uses
64 bits).

® Most image file formats limit indexed images to 256 colors. If you write an
indexed image with more than 256 colors (using imwrite) to a format that
does not support more than 256 colors, you will receive an error.

To reduce the number of colors in an image, use the rgb2ind function.
This function converts a truecolor image to an indexed image, reducing the
number of colors in the process. rgb2ind provides the following methods for
approximating the colors in the original image:
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® Quantization (described in “Quantization” on page 14-5)
= Uniform quantization
= Minimum variance quantization

¢ Colormap mapping (described in “Colormap Mapping” on page 14-9)

The quality of the resulting image depends on the approximation method
you use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 14-11 for a description of dithering and how to enable
or disable it.

Quantization

Reducing the number of colors in an image involves quantization. The
function rgb2ind uses quantization as part of its color reduction algorithm.
rgb2ind supports two quantization methods: uniform quantization and
minimum variance quantization.

An important term in discussions of image quantization is RGB color cube,
which is used frequently throughout this section. The RGB color cube is a
three-dimensional array of all of the colors that are defined for a particular
data type. Since RGB images in MATLAB can be of type uint8, uint16, or
double, three possible color cube definitions exist. For example, if an RGB
image is of class uint8, 256 values are defined for each color plane (red, blue,
and green), and, in total, there will be 22* (or 16,777,216) colors defined by the
color cube. This color cube is the same for all uint8 RGB images, regardless
of which colors they actually use.

The uint8, uint16, and double color cubes all have the same range of colors.
In other words, the brightest red in a uint8 RGB image appears the same as
the brightest red in a double RGB image. The difference is that the double
RGB color cube has many more shades of red (and many more shades of all
colors). The following figure shows an RGB color cube for a uint8 image.
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RGB Color Cube for uint8 Images

Quantization involves dividing the RGB color cube into a number of smaller
boxes, and then mapping all colors that fall within each box to the color value
at the center of that box.

Uniform quantization and minimum variance quantization differ in the
approach used to divide up the RGB color cube. With uniform quantization,
the color cube is cut up into equal-sized boxes (smaller cubes). With minimum
variance quantization, the color cube is cut up into boxes (not necessarily
cubes) of different sizes; the sizes of the boxes depend on how the colors are
distributed in the image.

Uniform Quantization. To perform uniform quantization, call rgb2ind and
specify a tolerance. The tolerance determines the size of the cube-shaped
boxes into which the RGB color cube is divided. The allowable range for a
tolerance setting is [0,1]. For example, if you specify a tolerance of 0. 1, the
edges of the boxes are one-tenth the length of the RGB color cube and the
maximum total number of boxes is

n = (floor(1/tol)+1)"3

The commands below perform uniform quantization with a tolerance of 0.1.

RGB = imread('peppers.png');
[x,map] = rgb2ind(RGB, 0.1);



Reducing the Number of Colors in an Image

The following figure illustrates uniform quantization of a uint8 image. For
clarity, the figure shows a two-dimensional slice (or color plane) from the color
cube where red=0 and green and blue range from 0 to 255. The actual pixel
values are denoted by the centers of the x’s.

G
Center pixe| value 255

Uniform Quantization on a Slice of the RGB Color Cube

After the color cube has been divided, all empty boxes are thrown out.
Therefore, only one of the boxes is used to produce a color for the colormap.
As shown earlier, the maximum length of a colormap created by uniform
quantization can be predicted, but the colormap can be smaller than the
prediction because rgb2ind removes any colors that do not appear in the
input image.

Minimum Variance Quantization. To perform minimum variance
quantization, call rgb2ind and specify the maximum number of colors in the
output image’s colormap. The number you specify determines the number
of boxes into which the RGB color cube is divided. These commands use
minimum variance quantization to create an indexed image with 185 colors.

RGB = imread( 'peppers.png');
[X,map] = rgb2ind(RGB,185);
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Minimum variance quantization works by associating pixels into groups
based on the variance between their pixel values. For example, a set of blue
pixels might be grouped together because they have a small variance from
the center pixel of the group.

In minimum variance quantization, the boxes that divide the color cube vary
in size, and do not necessarily fill the color cube. If some areas of the color
cube do not have pixels, there are no boxes in these areas.

While you set the number of boxes, n, to be used by rgb2ind, the placement
is determined by the algorithm as it analyzes the color data in your image.
Once the image is divided into n optimally located boxes, the pixels within
each box are mapped to the pixel value at the center of the box, as in uniform
quantization.

The resulting colormap usually has the number of entries you specify. This is
because the color cube is divided so that each region contains at least one color
that appears in the input image. If the input image uses fewer colors than the
number you specify, the output colormap will have fewer than n colors, and
the output image will contain all of the colors of the input image.

The following figure shows the same two-dimensional slice of the color cube as
shown in the preceding figure (demonstrating uniform quantization). Eleven
boxes have been created using minimum variance quantization.
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255

Center pixelvo lue 235

Minimum Variance Quantization on a Slice of the RGB Color Cube

For a given number of colors, minimum variance quantization produces better
results than uniform quantization, because it takes into account the actual
data. Minimum variance quantization allocates more of the colormap entries
to colors that appear frequently in the input image. It allocates fewer entries
to colors that appear infrequently. As a result, the accuracy of the colors

is higher than with uniform quantization. For example, if the input image
has many shades of green and few shades of red, there will be more greens
than reds in the output colormap. Note that the computation for minimum
variance quantization takes longer than that for uniform quantization.

Colormap Mapping

If you specify an actual colormap to use, rgh2ind uses colormap mapping
(instead of quantization) to find the colors in the specified colormap that best
match the colors in the RGB image. This method is useful if you need to
create images that use a fixed colormap. For example, if you want to display
multiple indexed images on an 8-bit display, you can avoid color problems by
mapping them all to the same colormap. Colormap mapping produces a good
approximation if the specified colormap has similar colors to those in the RGB
image. If the colormap does not have similar colors to those in the RGB image,
this method produces poor results.
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This example illustrates mapping two images to the same colormap. The
colormap used for the two images is created on the fly using the MATLAB
function colorcube, which creates an RGB colormap containing the number
of colors that you specify. (colorcube always creates the same colormap for a
given number of colors.) Because the colormap includes colors all throughout
the RGB color cube, the output images can reasonably approximate the input
images.

RGB1 imread('autumn.tif');
RGB2 = imread('peppers.png’');
X1 = rgb2ind(RGB1,colorcube(128));
X2 = rgb2ind(RGB2,colorcube(128));

Note The function subimage is also helpful for displaying multiple indexed
images. For more information, see or the reference page for subimage.

Reducing Colors Using imapprox

Use imapprox when you need to reduce the number of colors in an indexed
image. imapprox is based on rgb2ind and uses the same approximation
methods. Essentially, imapprox first calls ind2rgb to convert the image to
RGB format, and then calls rgb2ind to return a new indexed image with
fewer colors.

For example, these commands create a version of the trees image with 64
colors, rather than the original 128.

load trees
[Y,newmap] = imapprox(X,map,64);
imshow(Y, newmap);

The quality of the resulting image depends on the approximation method
you use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 14-11 for a description of dithering and how to enable
or disable it.
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Dithering

When you use rgb2ind or imapprox to reduce the number of colors in an
image, the resulting image might look inferior to the original, because some
of the colors are lost. rgh2ind and imapprox both perform dithering to
increase the apparent number of colors in the output image. Dithering
changes the colors of pixels in a neighborhood so that the average color in each
neighborhood approximates the original RGB color.

For an example of how dithering works, consider an image that contains

a number of dark orange pixels for which there is no exact match in the
colormap. To create the appearance of this shade of orange, dithering selects a
combination of colors from the colormap, that, taken together as a six-pixel
group, approximate the desired shade of orange. From a distance, the pixels
appear to be the correct shade, but if you look up close at the image, you can
see a blend of other shades. To illustrate dithering, the following example
loads a 24-bit truecolor image, and then uses rgb2ind to create an indexed
image with just eight colors. The first example does not use dithering, the
second does use dithering.

1 Read image and display it.

rgb=imread('onion.png');
imshow(rgb);

2 Create an indexed image with eight colors and without dithering.

[X_no_dither,map]= rgb2ind(rgb,8, 'nodither');
figure, imshow(X_no_dither,map);
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3 Create an indexed image using eight colors with dithering. Notice that the
dithered image has a larger number of apparent colors but is somewhat
fuzzy-looking. The image produced without dithering has fewer apparent
colors, but an improved spatial resolution when compared to the dithered
image. One risk in doing color reduction without dithering is that the new
image can contain false contours.

[X_dither,map]=rgb2ind(rgb,8, ‘dither");
figure, imshow(X_dither,map);
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Converting Color Data Between Color Spaces

In this section...

“Understanding Color Spaces and Color Space Conversion” on page 14-13
“Converting Between Device-Independent Color Spaces” on page 14-13

“Performing Profile-Based Color Space Conversions” on page 14-17

“Converting Between Device-Dependent Color Spaces” on page 14-21

Understanding Color Spaces and Color Space
Conversion

The Image Processing Toolbox™ software represents colors as RGB values,
either directly (in an RGB image) or indirectly (in an indexed image, where
the colormap is stored in RGB format). However, there are other models
besides RGB for representing colors numerically. The various models are
referred to as color spaces because most of them can be mapped into a 2-D,
3-D, or 4-D coordinate system; thus, a color specification is made up of
coordinates in a 2-D, 3-D, or 4-D space.

The various color spaces exist because they present color information in ways
that make certain calculations more convenient or because they provide a
way to identify colors that is more intuitive. For example, the RGB color
space defines a color as the percentages of red, green, and blue hues mixed
together. Other color models describe colors by their hue (green), saturation
(dark green), and luminance, or intensity.

The toolbox supports these color spaces by providing a means for converting
color data from one color space to another through a mathematical
transformation.

Converting Between Device-Independent Color
Spaces

The standard terms used to describe colors, such as hue, brightness, and
intensity, are subjective and make comparisons difficult.
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In 1931, the International Commission on Illumination, known by the
acronym CIE, for Commission Internationale de l’Eclairage, studied human
color perception and developed a standard, called the CIE XYZ. This standard
defined a three-dimensional space where three values, called tristimulus
values, define a color. This standard is still widely used today.

In the decades since that initial specification, the CIE has developed several
additional color space specifications that attempt to provide alternative
color representations that are better suited to some purposes than XYZ. For
example, in 1976, in an effort to get a perceptually uniform color space that
could be correlated with the visual appearance of colors, the CIE created
the L*a*b* color space.

The toolbox supports conversions between members of the CIE family of
device-independent color spaces. In addition, the toolbox also supports
conversions between these CIE color spaces and the sRGB color space. This
color space was defined by an industry group to describe the characteristics of
a typical PC monitor.

This section

e Lists the supported device-independent color spaces
® Provides an example of how to perform a conversion

® Provides guidelines about data type support of the various conversions

Supported Conversions
This table lists all the device-independent color spaces that the toolbox

supports.
Color Supported
Space| Description Conversions
XYZ | The original, 1931 CIE color space specification. xyY, wol,
u'v’L, and
L*a*h*
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Color Supported
Space| Description Conversions
xyY | CIE specification that provides normalized X¥YZ
chromaticity values. The capital Y value represents
luminance and is the same as in XYZ.
uvL | CIE specification that attempts to make the XYZ
chromaticity plane more visually uniform. Lis
luminance and is the same as Y in XYZ.
u'v’L | CIE specification in which z and v are rescaled to | XYZ
improve uniformity.
L*a*ht CIE specification that attempts to make the XYZ
luminance scale more perceptually uniform. L*is
a nonlinear scaling of L, normalized to a reference
white point.
L*ch | CIE specification where c is chroma and 4 is hue. L*a*h*
These values are a polar coordinate conversion of
a* and b* in L*a*b*
=R GE | Standard adopted by major manufacturers that XYZ and
characterizes the average PC monitor. L*a*h*

Example: Performing a Color Space Conversion
To illustrate a conversion between two device-independent color spaces,

this example reads an RGB color image into the MATLAB® workspace and
converts the color data to the XYZ color space:

1 Import color space data. This example reads an RGB color image into the
MATLAB workspace.

I_

rgb = imread('peppers.png');

2 Create a color transformation structure. A color transformation structure
defines the conversion between two color spaces. You use the makecform
function to create the structure, specifying a transformation type string
as an argument.
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This example creates a color transformation structure that defines a
conversion from RGB color data to XYZ color data.

C = makecform('srgh2xyz');

3 Perform the conversion. You use the applycform function to perform the
conversion, specifying as arguments the color data you want to convert
and the color transformation structure that defines the conversion. The
applycform function returns the converted data.

I xyz = applycform(I_rgb,C);

View a list of the workspace variables for the original and converted images.

whos

Name Size Bytes Class Attributes
C 1x1 7744 struct

I_rgb 384x512x3 589824 uint8

I xyz 384x512x3 1179648 uint16

Color Space Data Encodings

When you convert between two device-independent color spaces, the data
type used to encode the color data can sometimes change, depending on what
encodings the color spaces support. In the preceding example, the original
image is uint8 data. The XYZ conversion is uint16 data. The XYZ color space
does not define a uint8 encoding. The following table lists the data types that
can be used to represent values in all the device-independent color spaces.

Color Space | Encodings

XYz uint16 or double

xyY double

uvL double

u'v'L double

L*a*b* uint8, uint16, or double
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Color Space | Encodings
L*ch double
SsRGB double

As the table indicates, certain color spaces have data type limitations. For
example, the XYZ color space does not define a uint8 encoding. If you convert
8-bit CIE LAB data into the XYZ color space, the data is returned in uint16
format. If you want the returned XYZ data to be in the same format as the
input LAB data, you can use one of the following toolbox color space format
conversion functions.

lab2double
® lab2uint8
® lab2uinti16
® xyz2double
® xyz2uinti16

Performing Profile-Based Color Space Conversions
The Image Processing Toolbox software can perform color space conversions

based on device profiles. This section includes the following topics:
® “Understanding Device Profiles” on page 14-17

® “Reading ICC Profiles” on page 14-18

® “Writing Profile Information to a File” on page 14-19

¢ “Example: Performing a Profile-Based Conversion” on page 14-19

® “Specifying the Rendering Intent” on page 14-21

Understanding Device Profiles

If two colors have the same CIE colorimetry, they will match if viewed under
the same conditions. However, because color images are typically produced for
a wide variety of viewing environments, it is necessary to go beyond simple
application of the CIE system.
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For this reason, the International Color Consortium (ICC) has defined a Color
Management System (CMS) that provides a means for communicating color
information among input, output, and display devices. The CMS uses device
profiles that contain color information specific to a particular device. Vendors
that support CMS provide profiles that characterize the color reproduction

of their devices, and methods, called Color Management Modules (CMM),
that interpret the contents of each profile and perform the necessary image
processing.

Device profiles contain the information that color management systems need
to translate color data between devices. Any conversion between color spaces
is a mathematical transformation from some domain space to a range space.
With profile-based conversions, the domain space is often called the source
space and the range space is called the destination space. In the ICC color
management model, profiles are used to represent the source and destination
spaces.

For more information about color management systems, go to the
International Color Consortium Web site, www.color.org.

Reading ICC Profiles

To read an ICC profile into the MATLAB workspace, use the iccread
function. In this example, the function reads in the profile for the color space
that describes color monitors.

P = iccread('sRGB.icm');

You can use the iccfind function to find ICC color profiles on your system, or
to find a particular ICC color profile whose description contains a certain text
string. To get the name of the directory that is the default system repository
for ICC profiles, use iccroot.

iccread returns the contents of the profile in the structure P. All profiles
contain a header, a tag table, and a series of tagged elements. The header
contains general information about the profile, such as the device class, the
device color space, and the file size. The tagged elements, or tags, are the
data constructs that contain the information used by the CMM. For more
information about the contents of this structure, see the iccread function
reference page.


http://www.color.org
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Using iccread, you can read both Version 2 (ICC.1:2001-04) or Version 4
(ICC.1:2001-12) ICC profile formats. For detailed information about these
specifications and their differences, visit the ICC web site, www.color.org.

Writing Profile Information to a File

To export ICC profile information from the MATLAB workspace to a file,
use the iccwrite function. This example reads a profile into the MATLAB
workspace and then writes the profile information out to a new file.

P = iccread('sRGB.icm');
P_new = iccwrite(P, 'my_profile.icm');

iccwrite returns the profile it writes to the file in P_new because it can
be different than the input profile P. For example, iccwrite updates the
Filename field in P to match the name of the file specified as the second
argument.

iccwrite checks the validity of the input profile structure. If any required
fields are missing, iccwrite errors. For more information about the writing
ICC profile data to a file, see the iccwrite function reference page. To
determine if a structure is a valid ICC profile, use the isicc function.

Using iccwrite, you can export profile information in both Version 2
(ICC.1:2001-04) or Version 4 (ICC.1:2001-12) ICC profile formats. The value
of the Version field in the file profile header determines the format version.
For detailed information about these specifications and their differences, visit
the ICC web site, www.color.org.

Example: Performing a Profile-Based Conversion

To illustrate a profile-based color space conversion, this section presents an
example that converts color data from the RGB space of a monitor to the
CMYK space of a printer. This conversion requires two profiles: a monitor
profile and a printer profile. The source color space in this example is monitor
RGB and the destination color space is printer CMYK:

1 Import RGB color space data. This example imports an RGB color image
into the MATLAB workspace.

I_rgb = imread('peppers.png');
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2 Read ICC profiles. Read the source and destination profiles into the

MATLAB workspace. This example uses the sSRGB profile as the source
profile. The sRGB profile is an industry-standard color space that describes
a color monitor.

inprof = iccread('sRGB.icm');

For the destination profile, the example uses a profile that describes a
particular color printer. The printer vendor supplies this profile. (The
following profile and several other useful profiles can be obtained as
downloads from www.adobe.com.)

outprof = iccread('USSheetfedCoated.icc');

Create a color transformation structure. You must create a color
transformation structure to define the conversion between the color spaces
in the profiles. You use the makecform function to create the structure,
specifying a transformation type string as an argument.

Note The color space conversion might involve an intermediate conversion
into a device-independent color space, called the Profile Connection Space
(PCS), but this is transparent to the user.

This example creates a color transformation structure that defines a
conversion from RGB color data to CMYK color data.

C = makecform('icc',inprof,outprof);

Perform the conversion. You use the applycform function to perform the
conversion, specifying as arguments the color data you want to convert
and the color transformation structure that defines the conversion. The
function returns the converted data.

I cmyk = applycform(I_rgb,C);

Write the converted data to a file. To export the CMYK data, use the
imwrite function, specifying the format as TIFF. If the format is TIFF and
the data is an m-by-n-by-4 array, imwrite writes CMYK data to the file.

imwrite(I_cmyk, 'pep_cmyk.tif', 'tif')
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To verify that the CMYK data was written to the file, use imfinfo to get
information about the file and look at the PhotometricInterpretation
field.

info = imfinfo('pep_cmyk.tif');
info.PhotometricInterpretation
ans =

'CMYK'

Specifying the Rendering Intent

For most devices, the range of reproducible colors is much smaller than
the range of colors represented by the PCS. It is for this reason that four
rendering intents (or gamut mapping techniques) are defined in the profile
format. Each one has distinct aesthetic and color-accuracy tradeoffs.

When you create a profile-based color transformation structure, you can
specify the rendering intent for the source as well as the destination profiles.
For more information, see the makecform reference information.

Converting Between Device-Dependent Color Spaces

The toolbox includes functions that you can use to convert RGB data to several
common device-dependent color spaces, and vice versa:

e YIQ

e YCbCr

® Hue, saturation, value (HSV)

YIQ Color Space

The National Television Systems Committee (NTSC) defines a color space
known as YIQ. This color space is used in televisions in the United States.
One of the main advantages of this format is that grayscale information is
separated from color data, so the same signal can be used for both color and
black and white sets.

In the NTSC color space, image data consists of three components: luminance
(Y), hue (I), and saturation (Q). The first component, luminance, represents
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grayscale information, while the last two components make up chrominance
(color information,).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color
space. ntsc2rgb performs the reverse operation.

For example, these commands convert an RGB image to NTSC format.

RGB = imread('peppers.png');
YIQ = rgb2ntsc(RGB) ;

Because luminance is one of the components of the NTSC format, the RGB
to NTSC conversion is also useful for isolating the gray level information

in an image. In fact, the toolbox functions rgb2gray and ind2gray use the
rgb2ntsc function to extract the grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.

YIQ = rgb2ntsc(RGB);
I =YIQ(:,:,1);

Note In the YIQ color space, I is one of the two color components, not the
grayscale component.

YCbCr Color Space

The YCDbCr color space is widely used for digital video. In this format,
luminance information is stored as a single component (Y), and chrominance
information is stored as two color-difference components (Cb and Cr). Cb
represents the difference between the blue component and a reference value.
Cr represents the difference between the red component and a reference
value. (YUV, another color space widely used for digital video, is very similar
to YCbCr but not identical.)

YCbCr data can be double precision, but the color space is particularly well
suited to uint8 data. For uint8 images, the data range for Y is [16, 235],
and the range for Cb and Cr is [16, 240]. YCbCr leaves room at the top and
bottom of the full uint8 range so that additional (nonimage) information
can be included in a video stream.
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The function rgb2ycbcr converts colormaps or RGB images to the YCbCr
color space. ychcr2rgb performs the reverse operation.

For example, these commands convert an RGB image to YCbCr format.

RGB = imread('peppers.png');
YCBCR = rgb2ycbcr(RGB) ;

HSV Color Space

The HSV color space (Hue, Saturation, Value) is often used by people who are
selecting colors (e.g., of paints or inks) from a color wheel or palette, because it
corresponds better to how people experience color than the RGB color space
does. The functions rgb2hsv and hsv2rgb convert images between the RGB
and HSV color spaces.

Note MATLAB and the Image Processing Toolbox software do not support
the HSI color space (Hue, Saturation, Intensity). However, if you want to
work with color data in terms of hue, saturation, and intensity, the HSV
color space is very similar. Another option is the use the LCH color space
(Luminosity, Chroma, and Hue), which is a polar transformation of the CIE
L*a*b* color space — see “Converting Between Device-Independent Color
Spaces” on page 14-13.

As hue varies from 0 to 1.0, the corresponding colors vary from red through
yellow, green, cyan, blue, magenta, and back to red, so that there are
actually red values both at 0 and 1.0. As saturation varies from 0 to 1.0, the
corresponding colors (hues) vary from unsaturated (shades of gray) to fully
saturated (no white component). As value, or brightness, varies from 0 to 1.0,
the corresponding colors become increasingly brighter.

The following figure illustrates the HSV color space.
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Saturation

0

lllustration of the HSV Color Space

The rgb2hsv function converts colormaps or RGB images to the HSV color
space. hsv2rgb performs the reverse operation. These commands convert an
RGB image to the HSV color space.

RGB = imread('peppers.png');
HSV rgb2hsv (RGB) ;

For closer inspection of the HSV color space, the next block of code displays
the separate color planes (hue, saturation, and value) of an HSV image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
HSV=rgb2hsv (RGB) ;

H=HSV(:,:,1);
S=HSV(:,:,2);
V=HSV(:,:,3);

subplot(2,2,1), imshow(H)
subplot(2,2,2), imshow(S)
subplot(2,2,3), imshow(V)
subplot(2,2,4), imshow(RGB)
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The Separated Color Planes of an HSV Image

As the hue plane image in the preceding figure illustrates, hue values make a
linear transition from high to low. If you compare the hue plane image against
the original image, you can see that shades of deep blue have the highest
values, and shades of deep red have the lowest values. (As stated previously,
there are values of red on both ends of the hue scale. To avoid confusion, the
sample image uses only the red values from the beginning of the hue range.)

Saturation can be thought of as the purity of a color. As the saturation plane
image shows, the colors with the highest saturation have the highest values
and are represented as white. In the center of the saturation image, notice
the various shades of gray. These correspond to a mixture of colors; the
cyans, greens, and yellow shades are mixtures of true colors. Value is roughly
equivalent to brightness, and you will notice that the brightest areas of the
value plane correspond to the brightest colors in the original image.
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Neighborhood and Block
Operations

This chapter discusses these generic block processing functions. Topics
covered include

Neighborhood or Block Processing:
An Overview (p. 15-2)

Performing Sliding Neighborhood
Operations (p. 15-4)

Performing Distinct Block
Operations (p. 15-9)

Using Columnwise Processing to
Speed Up Sliding Neighborhood or
Distinct Block Operations (p. 15-13)

Provides an overview of the types
of block processing operations
supported by the toolbox

Defines sliding neighborhood
operations and describes how you
can use them to implement many
types of filtering operations

Describes block operations

Describes how to process sliding
neighborhoods or distinct blocks as
columns



15 Neighborhood and Block Operations

Neighborhood or Block Processing: An Overview

Certain image processing operations involve processing an image in sections,
called blocks or neighborhoods, rather than processing the entire image

at once. Several functions in the toolbox, such as linear filtering and
morphological functions, use this approach.

The toolbox includes several functions that you can use to implement image
processing algorithms as a block or neighborhood operation. These functions
break the input image into blocks or neighborhoods, call the specified function
to process each block or neighborhood, and then reassemble the results into
an output image. The following table summarizes these functions.

Function Description

nlfilter Implements sliding neighborhood
operations that you can use to
process an input images in a
pixelwise fashion. For each pixel
in the input image, the functions
performs the operation you specify
on a block of neighboring pixels
to determine the value of the
corresponding pixel in the output
image. For more information, see
“Performing Sliding Neighborhood
Operations” on page 15-4
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Function

Description

blkproc

Implements distinct block operations
that you can use to process an input
image a block at a time. The function
divides the image into rectangular
blocks, and performs the operation
you specify on each individual block
to determine the values of the pixels
in the corresponding block of the
output image. For more information,
see “Performing Distinct Block
Operations” on page 15-9

colfilt

Implements columnwise processing
operations which provide a way of
speeding up neighborhood or block
operations by rearranging blocks
into matrix columns. For more
information, see “Using Columnwise
Processing to Speed Up Sliding
Neighborhood or Distinct Block
Operations” on page 15-13.
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Performing Sliding Neighborhood Operations

In this section...

“Understanding Sliding Neighborhood Processing” on page 15-4

“Implementing Linear and Nonlinear Filtering as Sliding Neighborhood
Operations” on page 15-6

Understanding Sliding Neighborhood Processing

A sliding neighborhood operation is an operation that is performed a pixel at a
time, with the value of any given pixel in the output image being determined
by the application of an algorithm to the values of the corresponding input
pixel’s neighborhood. A pixel’s neighborhood is some set of pixels, defined by
their locations relative to that pixel, which is called the center pixel. The
neighborhood is a rectangular block, and as you move from one element to the
next in an image matrix, the neighborhood block slides in the same direction.
(To operate on an image a block at a time, rather than a pixel at a time,

use the distinct block processing function. See “Performing Distinct Block
Operations” on page 15-9 for more information.)

The following figure shows the neighborhood blocks for some of the elements
in a 6-by-5 matrix with 2-by-3 sliding blocks. The center pixel for each
neighborhood is marked with a dot. For information about how the center
pixel is determined, see “Determining the Center Pixel” on page 15-5.

Neighborhood Blocks in a 6-by-5 Matrix
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Determining the Center Pixel

The center pixel is the actual pixel in the input image being processed by
the operation. If the neighborhood has an odd number of rows and columns,
the center pixel is actually in the center of the neighborhood. If one of the
dimensions has even length, the center pixel is just to the left of center or
just above center. For example, in a 2-by-2 neighborhood, the center pixel
is the upper left one.

For any m-by-n neighborhood, the center pixel is

floor(([m n]l+1)/2)

In the 2-by-3 block shown in the preceding figure, the center pixel is (1,2), or
the pixel in the second column of the top row of the neighborhood.

General Algorithm of Sliding Neighborhood Operations

To perform a sliding neighborhood operation,
1 Select a single pixel.
2 Determine the pixel’s neighborhood.

3 Apply a function to the values of the pixels in the neighborhood. This
function must return a scalar.

4 Find the pixel in the output image whose position corresponds to that of
the center pixel in the input image. Set this output pixel to the value
returned by the function.

5 Repeat steps 1 through 4 for each pixel in the input image.

For example, the function might be an averaging operation that sums the
values of the neighborhood pixels and then divides the result by the number
of pixels in the neighborhood. The result of this calculation is the value of
the output pixel.

Padding Borders in Sliding Neighborhood Operations

As the neighborhood block slides over the image, some of the pixels in a
neighborhood might be missing, especially if the center pixel is on the border of
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the image. For example, if the center pixel is the pixel in the upper left corner
of the image, the neighborhoods include pixels that are not part of the image.

To process these neighborhoods, sliding neighborhood operations pad the
borders of the image, usually with 0’s. In other words, these functions process
the border pixels by assuming that the image is surrounded by additional
rows and columns of 0’s. These rows and columns do not become part of the
output image and are used only as parts of the neighborhoods of the actual
pixels in the image.

Implementing Linear and Nonlinear Filtering as
Sliding Neighborhood Operations

You can use sliding neighborhood operations to implement many kinds

of filtering operations. One example of a sliding neighbor operation is
convolution, which is used to implement linear filtering. MATLAB® provides
the conv and filter2 functions for performing convolution, and the toolbox
provides the imfilter function. See Chapter 8, “Designing and Implementing
2-D Linear Filters for Image Data” for more information about these functions.

In addition to convolution, there are many other filtering operations you can
implement through sliding neighborhoods. Many of these operations are
nonlinear in nature. For example, you can implement a sliding neighborhood
operation where the value of an output pixel is equal to the standard deviation
of the values of the pixels in the input pixel’s neighborhood.

To implement a variety of sliding neighborhood operations, use the n1filter
function. n1filter takes as input arguments an image, a neighborhood size,
and a function that returns a scalar, and returns an image of the same size as
the input image. nl1filter calculates the value of each pixel in the output
image by passing the corresponding input pixel’s neighborhood to the function.

Note Many operations that n1filter can implement run much faster if
the computations are performed on matrix columns rather than rectangular
neighborhoods. For information about this approach, see “Using Columnwise
Processing to Speed Up Sliding Neighborhood or Distinct Block Operations”
on page 15-13.
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For example, this code computes each output pixel by taking the standard
deviation of the values of the input pixel’s 3-by-3 neighborhood (that is, the
pixel itself and its eight contiguous neighbors).

I = imread('tire.tif');

I2 = nlfilter(I,[3 3], 'std2');

You can also write an M-file to implement a specific function, and then use
this function with n1filter. For example, this command processes the matrix
I in 2-by-3 neighborhoods with a function called myfun.m. The syntax @myfun
is an example of a function handle.

I2 = nlfilter(I,[2 3],@myfun);

If you prefer not to write an M-file, you can use an anonymous function
instead. This example converts the image to class double because the square
root function is not defined for the uint8 datatype.

I = im2double(imread('tire.tif'));
f = @(x) sqrt(min(x(:)));
I2 = nlfilter(I,[2 2],f);

(For more information on function handles and anonymous functions, see
function_handle in the MATLAB Function Reference documentation.)

The following example uses n1filter to set each pixel to the maximum value
in its 3-by-3 neighborhood.

Note This example is only intended to illustrate the use of n1filter. For a
faster way to perform this local maximum operation, use imdilate.

I imread('tire.tif');

f @(x) max(x(:));

I2 = nlfilter(I,[3 3],f);
imshow(I);

figure, imshow(I2);
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Each Output Pixel Set to Maximum Input Neighborhood Value
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Performing Distinct Block Operations

In this section...

“Understanding Distinct Block Processing” on page 15-9
“Implementing Block Processing Using the blkproc Function” on page 15-10

“Specifying Overlap” on page 15-11

Understanding Distinct Block Processing

In distinct block processing, you divide a matrix into m-by-n sections. These
sections, or distinct blocks, overlay the image matrix starting in the upper
left corner, with no overlap. If the blocks don’t fit exactly over the image, you
add zero padding to the matrix so that they do. The following figure shows a
15-by-30 matrix divided into 4-by-8 blocks. Note how the zero padding process
adds 0’s to the bottom and right of the image matrix, as needed. After zero
padding, the matrix in the figure is size 16-by-32. (To operate on an image a
pixel at a time, rather than a block at a time, use the sliding neighborhood
processing function. See “Performing Sliding Neighborhood Operations” on
page 15-4 for more information.)

Image Divided into Distinct Blocks

15-9



15 Neighborhood and Block Operations

15-10

Implementing Block Processing Using the blkproc
Function

To perform distinct block operations, use the blkproc function. blkproc
extracts each distinct block from an image and passes it to a function you
specify for processing. blkproc assembles the returned blocks to create an
output image.

Note Many operations that blkproc can implement run much faster if the
computations are performed on matrix columns rather than rectangular
blocks. For information about this approach, see “Using Columnwise
Processing to Speed Up Sliding Neighborhood or Distinct Block Operations”
on page 15-13.

4

For example, the command below processes the matrix I in 4-by-6 blocks
with the function myfun.

I2 = blkproc(I,[4 6],@myfun);

If you prefer not to create an M-file, you can specify the function as an
anonymous function. For example:

f = @(x) mean2(x)*ones(size(x));
I2 = blkproc(I,[4 6],T);

(For more information about using function handles and anonymous functions,
see function_handle in the MATLAB® Function Reference documentation.)

The example below uses blkproc to set every pixel in each 8-by-8 block of an
image matrix to the average of the elements in that block. In the example,
the anonymous function computes the mean of the block and then multiplies
the result by a matrix of ones, so that the output block is the same size as the
input block. As a result, the output image is the same size as the input image.
blkproc does not require that the images be the same size; however, if this

is the result you want, you must make sure that the function you specify
returns blocks of the appropriate size.

I = imread('tire.tif');
@(x) uint8(round(mean2(x)*ones(size(x))));
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12 = blkproc(I,[8 8],f);
imshow(I)
figure, imshow(I2);

Specifying Overlap

When you call blkproc to define distinct blocks, you can specify that the
blocks overlap each other, that is, you can specify extra rows and columns of
pixels outside the block whose values are taken into account when processing
the block. When there is an overlap, blkproc passes the expanded block
(including the overlap) to the specified function.

The following figure shows the overlap areas for some of the blocks in a
15-by-30 matrix with 1-by-2 overlaps. Each 4-by-8 block has a one-row
overlap above and below, and a two-column overlap on each side. In the figure,
shading indicates the overlap. The 4-by-8 blocks overlay the image matrix
starting in the upper left corner.

Note Overlap often increases the amount of zero padding needed. For
example, in the figure, the original 15-by-30 matrix became a 16-by-32 matrix
with zero padding. When the 15-by-30 matrix includes a 1-by-2 overlap, the
padded matrix becomes an 18-by-36 matrix. The outermost rectangle in the
figure delineates the new boundaries of the image after padding has been
added to accommodate the overlap plus block processing. Notice that in the
figure, padding has been added to the left and top of the original image, not
just to the right and bottom.
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Image Divided into Distinct Blocks with Specified Overlaps

To specify the overlap, you provide an additional input argument to blkproc.
To process the blocks in the figure above with the function myfun, the call is

B = blkproc(A,[4 8],[1 2],@myfun)
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Using Columnwise Processing to Speed Up Sliding
Neighborhood or Distinct Block Operations

In this section...

“Understanding Columnwise Processing” on page 15-13

“Using Column Processing with Sliding Neighborhood Operations” on page
15-13

“Using Column Processing with Distinct Block Operations” on page 15-15

Understanding Columnwise Processing

Performing sliding neighborhood and distinct block operations columnwise,
when possible, can reduce the execution time required to process an image.

For example, suppose the operation you are performing involves computing
the mean of each block. This computation is much faster if you first rearrange
the blocks into columns, because you can compute the mean of every column
with a single call to the mean function, rather than calling mean for each block
individually.

To use column processing, use the colfilt function . This function

1 Reshapes each sliding or distinct block of an image matrix into a column in
a temporary matrix

2 Passes the temporary matrix to a function you specify

3 Rearranges the resulting matrix back into the original shape

Using Column Processing with Sliding Neighborhood
Operations

For a sliding neighborhood operation, colfilt creates a temporary matrix
that has a separate column for each pixel in the original image. The column
corresponding to a given pixel contains the values of that pixel’s neighborhood
from the original image.
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The following figure illustrates this process. In this figure, a 6-by-5 image
matrix is processed in 2-by-3 neighborhoods. colfilt creates one column
for each pixel in the image, so there are a total of 30 columns in the
temporary matrix. Each pixel’s column contains the value of the pixels in its
neighborhood, so there are six rows. colfilt zero-pads the input image as
necessary. For example, the neighborhood of the upper left pixel in the figure
has two zero-valued neighbors, due to zero padding.

colfilt Creates a Temporary Matrix for Sliding Neighborhood

The temporary matrix is passed to a function, which must return a single
value for each column. (Many MATLAB® functions work this way, for
example, mean, median, std, sum, etc.) The resulting values are then assigned
to the appropriate pixels in the output image.

colfilt can produce the same results as n1filter with faster execution time;
however, it might use more memory. The example below sets each output
pixel to the maximum value in the input pixel’s neighborhood, producing the
same result as the n1filter example shown in “Implementing Linear and
Nonlinear Filtering as Sliding Neighborhood Operations” on page 15-6.

I2 = colfilt(I,[3 3], 'sliding',@max);
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Using Column Processing with Distinct Block
Operations

For a distinct block operation, colfilt creates a temporary matrix by
rearranging each block in the image into a column. colfilt pads the original
image with 0’s, if necessary, before creating the temporary matrix.

The following figure illustrates this process. A 6-by-16 image matrix is
processed in 4-by-6 blocks. colfilt first zero-pads the image to make the size
8-by-18 (six 4-by-6 blocks), and then rearranges the blocks into six columns
of 24 elements each.

colfilt Creates a Temporary Matrix for Distinct Block Operation

After rearranging the image into a temporary matrix, colfilt passes this
matrix to the function. The function must return a matrix of the same size as
the temporary matrix. If the block size is m-by-n, and the image is mm-by-nn,
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the size of the temporary matrix is (m*n)-by-(ceil(mm/m)*ceil(nn/n)).
After the function processes the temporary matrix, the output is rearranged
into the shape of the original image matrix.

This example sets all the pixels in each 8-by-8 block of an image to the mean
pixel value for the block, producing the same result as the blkproc example
in “Performing Distinct Block Operations” on page 15-9.

I = im2double(imread('tire.tif'));
f = @(x) ones(64,1)*mean(x);
I2 = colfilt(I,[8 8], 'distinct',f);

The anonymous function in the example computes the mean of the block
and then multiplies the result by a vector of ones, so that the output block is
the same size as the input block. As a result, the output image is the same
size as the input image.

Restrictions

You can use colfilt to implement many of the same distinct block operations
that blkproc performs. However, colfilt has certain restrictions that
blkproc does not:

¢ The output image must be the same size as the input image.

¢ The blocks cannot overlap.

For situations that do not satisfy these constraints, use blkproc.
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Image Display and Exploration
(p. 16-2)

GUI Tools (p. 16-6)

Spatial Transformation and Image
Registration (p. 16-9)

Image Analysis and Statistics
(p. 16-11)

Image Arithmetic (p. 16-13)

Image Enhancement and
Restoration (p. 16-14)

Linear Filtering and Transforms
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Morphological Operations (p. 16-18)

ROI-Based, Neighborhood, and
Block Processing (p. 16-21)

Colormap and Color Space Functions
(p. 16-22)

Miscellaneous Functions (p. 16-24)

Display, import, and export images

Modular interactive tools and
associated utility functions.

Spatial transformation and image
registration

Image analysis, texture analysis,
view pixel values, and calculate
image statistics

Add, subtract, multiply, and divide
images

Enhance and restore images

Linear filters, filter design, and
image transforms

Morphological image processing

ROI-based, neighborhood, and block
operations

Manipulate image color

Array operations, demos, preferences
and other toolbox utility functions
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Image Display and Exploration

16-2

Image Display and Exploration
(p. 16-2)

Image File I/O (p. 16-2)

Image Types and Type Conversions
(p. 16-3)

Display and explore images

Import and export images

Convert between the various image
types

Image Display and Exploration

colorbar
immovie

implay

imshow
imtool

montage
subimage

warp

Image File 1/0

analyze75info
analyze75read

dicomanon

Display color bar
Make movie from multiframe image

Play movies, videos, or image
sequences

Display image
Image Tool

Display multiple image frames as
rectangular montage

Display multiple images in single
figure

Display image as texture-mapped
surface

Read metadata from header file of
Analyze 7.5 data set

Read image data from image file of
Analyze 7.5 data set

Anonymize DICOM file



Image Display and Exploration

dicomdict

dicominfo

dicomlookup

dicomread
dicomuid
dicomwrite

hdrread

hdrwrite

interfileinfo
interfileread
makehdr

nitfinfo

nitfread

tonemap

Get or set active DICOM data
dictionary

Read metadata from DICOM
message

Find attribute in DICOM data
dictionary

Read DICOM image
Generate DICOM unique identifier
Write images as DICOM files

Read high dynamic range (HDR)
image

Write Radiance high dynamic range
(HDR) image file

Read metadata from Interfile file
Read images in Interfile format
Create high dynamic range image

Read metadata from National
Imagery Transmission Format
(NITF) file

Read image from National Imagery
Transmission Format (NITF) file

Render high dynamic range image
for viewing

Image Types and Type Conversions

demosaic

dither

double

Convert Bayer pattern encoded
image to truecolor image

Convert image, increasing apparent
color resolution by dithering

Convert data to double precision
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gray2ind

grayslice

graythresh

im2bw

im2double
im2int16

im2java

im2java2d

im2single

im2uinti16

im2uint8

ind2gray

ind2rgb

label2rgb

mat2gray
rgb2gray

rgb2ind

Convert grayscale or binary image
to indexed image

Convert grayscale image to indexed
image using multilevel thresholding

Global image threshold using Otsu’s
method

Convert image to binary image,
based on threshold

Convert image to double precision

Convert image to 16-bit signed
integers

Convert image to Java image

Convert image to Java buffered
image

Convert image to single precision

Convert image to 16-bit unsigned
integers

Convert image to 8-bit unsigned
integers

Convert indexed image to grayscale
image

Convert indexed image to RGB
image

Convert label matrix into RGB
image

Convert matrix to grayscale image

Convert RGB image or colormap to
grayscale

Convert RGB image to indexed
image



Image Display and Exploration

uint16 Convert data to unsigned 16-bit
integers

uint8 Convert data to unsigned 8-bit
integers
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GUI Tools

Modular Interactive Tools (p. 16-6)

Navigational tools for Image Scroll
Panel (p. 16-6)

Utility Functions for Interactive
Tools (p. 16-7)

Modular Interactive Tools

imageinfo
imcontrast
imdisplayrange
imdistline
impixelinfo

impixelinfoval

impixelregion

impixelregionpanel

Modular interactive tool creation
functions

Modular interactive navigational
tools

Modular interactive tool utility
functions

Image Information tool
Adjust Contrast tool
Display Range tool
Distance tool

Pixel Information tool

Pixel Information tool without text
label

Pixel Region tool

Pixel Region tool panel

Navigational tools for Image Scroll Panel

immagbox

imoverview

imoverviewpanel

imscrollpanel

Magnification box for scroll panel

Overview tool for image displayed in
scroll panel

Overview tool panel for image
displayed in scroll panel

Scroll panel for interactive image
navigation



GUI Tools

Utility Functions for Interactive Tools

axes2pix

getimage

getimagemodel

imattributes
imellipse
imfreehand

imgca

imgcf

imgetfile
imhandles
imline

impoint

impoly

imrect

imroi
iptaddcallback
iptcheckhandle
iptgetapi

iptGetPointerBehavior

ipticondir

iptPointerManager

Convert axes coordinates to pixel
coordinates

Image data from axes

Image model object from image
object

Information about image attributes
Create draggable ellipse
Create draggable freehand region

Get handle to current axes
containing image

Get handle to current figure
containing image

Open Image dialog box

Get all image handles

Create draggable, resizable line
Create draggable point

Create draggable, resizable polygon
Create draggable rectangle
Region-of-interest (ROI) base class
Add function handle to callback list
Check validity of handle

Get Application Programmer
Interface (API) for handle

Retrieve pointer behavior from HG
object

Directories containing IPT and
MATLAB® icons

Create pointer manager in figure
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iptremovecallback

iptSetPointerBehavior

iptwindowalign

makeConstrainToRectFcn

truesize

Delete function handle from callback
list

Store pointer behavior structure in
Handle Graphics object

Align figure windows

Create rectangularly bounded drag
constraint function

Adjust display size of image



Spatial Transformation and Image Registration

Spatial Transformation and Image Registration

Spatial Transformations (p. 16-9)

Image Registration (p. 16-10)

Spatial Transformations

checkerboard

findbounds

fliptform

imcrop

impyramid

imresize
imrotate

imtransform

makeresampler

maketform

tformarray

tformfwd

tforminv

Spatial transformation of images
and multidimensional arrays

Align two images using control
points

Create checkerboard image

Find output bounds for spatial
transformation

Flip input and output roles of TFORM
structure

Crop image

Image pyramid reduction and
expansion

Resize image
Rotate image

Apply 2-D spatial transformation to
image

Create resampling structure

Create spatial transformation
structure (TFORM)

Apply spatial transformation to N-D
array

Apply forward spatial
transformation

Apply inverse spatial transformation
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Image Registration

cp2tform Infer spatial transformation from
control point pairs

cpcorr Tune control-point locations using
cross correlation

cpselect Control Point Selection Tool

cpstruct2pairs Convert CPSTRUCT to valid pairs of

control points

normxcorr2 Normalized 2-D cross-correlation
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Image Analysis and Statistics

Image Analysis (p. 16-11) Trace boundaries, detect edges, and
perform quadtree decomposition

Texture Analysis (p. 16-11) Entropy, range, and standard
deviation filtering; gray-level
co-occurrence matrix

Pixel Values and Statistics (p. 16-12) Create histograms, contour plots,
and get statistics on image regions

Image Analysis

bwboundaries Trace region boundaries in binary
image

bwtraceboundary Trace object in binary image

edge Find edges in grayscale image

hough Hough transform

houghlines Extract line segments based on
Hough transform

houghpeaks Identify peaks in Hough transform

gtdecomp Quadtree decomposition

gtgetblk Block values in quadtree
decomposition

gtsetblk Set block values in quadtree
decomposition

Texture Analysis

entropy Entropy of grayscale image

entropyfilt Local entropy of grayscale image
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graycomatrix
graycoprops

rangefilt
stdfilt

Pixel Values and Statistics

corr2
imcontour
imhist
impixel

improfile

mean2

pixval
regionprops

std2

Create gray-level co-occurrence
matrix from image

Properties of gray-level co-occurrence
matrix

Local range of image

Local standard deviation of image

2-D correlation coefficient

Create contour plot of image data
Display histogram of image data
Pixel color values

Pixel-value cross-sections along line
segments

Average or mean of matrix elements

Display information about image
pixels

Measure properties of image regions
(blob analysis)

Standard deviation of matrix
elements
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Image Arithmetic

imabsdiff

imadd

imcomplement

imdivide

imlincomb

immultiply

imsubtract

Absolute difference of two images

Add two images or add constant to
image

Complement image

Divide one image into another or
divide image by constant

Linear combination of images

Multiply two images or multiply
image by constant

Subtract one image from another or
subtract constant from image
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Image Enhancement and Restoration

Image Enhancement (p. 16-14) Histogram equalization,
decorrelation stretching, and
2-D filtering

Image Restoration (Deblurring) Deconvolution for deblurring
(p. 16-14)

Image Enhancement

adapthisteq Contrast-limited adaptive histogram
equalization (CLAHE)

decorrstretch Apply decorrelation stretch to
multichannel image

histeq Enhance contrast using histogram
equalization

imadjust Adjust image intensity values or
colormap

imnoise Add noise to image

intlut Convert integer values using lookup
table

medfilt2 2-D median filtering

ordfilt2 2-D order-statistic filtering

stretchlim Find limits to contrast stretch image

wiener2 2-D adaptive noise-removal filtering

Image Restoration (Deblurring)

deconvblind Deblur image using blind
deconvolution

deconvlucy Deblur image using Lucy-Richardson
method
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deconvreg
deconvwnr

edgetaper

otf2psf

psf2otf

Deblur image using regularized filter
Deblur image using Wiener filter

Taper discontinuities along image
edges

Convert optical transfer function to
point-spread function

Convert point-spread function to
optical transfer function
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Linear Filtering and Transforms
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Linear Filtering (p. 16-16)

Linear 2-D Filter Design (p. 16-16)
Image Transforms (p. 16-17)

Linear Filtering

conv2
convmtx2
convn
filter2
fspecial

imfilter

Linear 2-D Filter Design

freqgspace

freqz2
fsamp2

ftrans2
fwind1

fwind2

Convolution, N-D filtering, and
predefined 2-D filters

2-D FIR filters

Fourier, Discrete Cosine, Radon, and
Fan-beam transforms

2-D convolution

2-D convolution matrix
N-D convolution

2-D linear filtering

Create predefined 2-D filter

N-D filtering of multidimensional
images

Determine frequency spacing for 2-D
frequency response

2-D frequency response

2-D FIR filter using frequency
sampling

2-D FIR filter using frequency
transformation

2-D FIR filter using 1-D window
method

2-D FIR filter using 2-D window
method



Linear Filtering and Transforms

Image Transforms

dct2
dctmtx

fan2para

fanbeam
fft2
fftn
fftshift

idct2
ifanbeam
ifft2
ifftn
iradon

para2fan

phantom

radon

2-D discrete cosine transform
Discrete cosine transform matrix

Convert fan-beam projections to
parallel-beam

Fan-beam transform
2-D fast Fourier transform
N-D fast Fourier transform

Shift zero-frequency component of
fast Fourier transform to center of
spectrum

2-D inverse discrete cosine transform
Inverse fan-beam transform

2-D inverse fast Fourier transform
N-D inverse fast Fourier transform
Inverse Radon transform

Convert parallel-beam projections to
fan-beam

Create head phantom image

Radon transform
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Morphological Operations
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Intensity and Binary Images
(p. 16-18)

Binary Images (p. 16-19)

Structuring Element (STREL)
Creation and Manipulation (p. 16-20)

conndef
imbothat

imclearborder

imclose
imdilate
imerode
imextendedmax
imextendedmin
imfill

imhmax

imhmin
imimposemin
imopen
imreconstruct

imregionalmax

Dilate, erode, reconstruct, and
perform other morphological
operations

Label, pack, and perform
morphological operations on
binary images

Create and manipulate structuring
elements for morphological
operations

Intensity and Binary Images

Create connectivity array
Bottom-hat filtering

Suppress light structures connected
to image border

Morphologically close image
Dilate image

Erode image
Extended-maxima transform
Extended-minima transform
Fill image regions and holes
H-maxima transform
H-minima transform

Impose minima
Morphologically open image
Morphological reconstruction

Regional maxima



Morphological Operations

imregionalmin
imtophat

watershed

Binary Images

applylut

bwarea

bwareaopen

bwdist
bweuler
bwhitmiss

bwlabel
bwlabeln
bwmorph

bwpack

bwperim

bwselect
bwulterode
bwunpack
imregionalmin
imtophat

makelut

Regional minima
Top-hat filtering

Watershed transform

Neighborhood operations on binary
images using lookup tables

Area of objects in binary image

Morphologically open binary image
(remove small objects)

Distance transform of binary image
Euler number of binary image
Binary hit-miss operation

Label connected components in
binary image

Label connected components in N-D
binary image

Morphological operations on binary
images

Pack binary image

Find perimeter of objects in binary
image

Select objects in binary image
Ultimate erosion

Unpack binary image
Regional minima

Top-hat filtering

Create lookup table for use with
applylut
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Structuring Element (STREL) Creation and

Manipulation

getheight Height of structuring element

getneighbors Structuring element neighbor
locations and heights

getnhood Structuring element neighborhood

getsequence Sequence of decomposed structuring
elements

isflat True for flat structuring element

reflect Reflect structuring element

strel Create morphological structuring
element (STREL)

translate Translate structuring element

(STREL)
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ROI-Based, Neighborhood, and Block Processing

ROI-Based Processing (p. 16-21) Define regions of interest (ROI) and
perform operations on them

Neighborhood and Block Processing Defining neighborhoods and blocks
(p. 16-21) and processing them

ROI-Based Processing

poly2mask Convert region of interest (ROI)
polygon to region mask

roicolor Select region of interest (ROI) based
on color

roifill Fill in specified region of interest
(ROI) polygon in grayscale image

roifilt2 Filter region of interest (ROI) in
image

roipoly Specify polygonal region of interest
(ROD)

Neighborhood and Block Processing

bestblk Determine optimal block size for
block processing

blkproc Distinct block processing for image

col2im Rearrange matrix columns into
blocks

colfilt Columnwise neighborhood
operations

im2col Rearrange image blocks into columns

nlfilter General sliding-neighborhood
operations
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Colormap and Color Space Functions

Colormap Manipulation (p. 16-22) Manipulate colormaps to brighten or
change an image

Color Space Conversions (p. 16-22) ICC profile-based device independent
color space conversions and
device-dependent color space

conversions
Colormap Manipulation
brighten Brighten or darken colormap
cmpermute Rearrange colors in colormap
cmunique Eliminate duplicate colors in

colormap; convert grayscale or
truecolor image to indexed image

imapprox Approximate indexed image by one
with fewer colors

rgbplot Plot colormap

Color Space Conversions

applycform Apply device-independent color
space transformation

hsv2rgb Convert hue-saturation-value (HSV)
values to RGB color space

iccfind Search for ICC profiles

iccread Read ICC profile

iccroot Find system default ICC profile
repository

iccwrite Write ICC color profile to disk file

isicc True for valid ICC color profile
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lab2double
lab2uinti16
lab2uint8

makecform

ntsc2rgb

rgb2hsv

rgb2ntsc

rgb2ycbcr

whitepoint

xXyz2double
Xyz2uinti16
ycbcr2rgb

Convert L*a*b* data to double
Convert L*a*b* data to uint16
Convert L*a*b* data to uint8

Create color transformation
structure

Convert NTSC values to RGB color
space

Convert RGB values to
hue-saturation-value (HSV)
color space

Convert RGB color values to NTSC
color space

Convert RGB color values to YCbCr
color space

XYZ color values of standard
illuminants

Convert XYZ color values to double
Convert XYZ color values to uint16

Convert YCbCr color values to RGB
color space
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16 Function Reference

Miscellaneous Functions

16-24

Toolbox Preferences (p. 16-24)
Toolbox Utility Functions (p. 16-24)

Interactive Mouse Utility Functions
(p. 16-25)

Array Operations (p. 16-25)
Demos (p. 16-25)

Performance (p. 16-25)

Toolbox Preferences

iptgetpref

iptsetpref

Toolbox Utility Functions

getrangefromclass
iptcheckconn

iptcheckinput
iptcheckmap

Set and determine the value of
toolbox preferences

Check input arguments and perform
other common programming tasks

Retrieve the values of lines, points,
and rectangles defined interactively
using the mouse

Circularly shift pixel values and pad
arrays

Launch Image Processing Toolbox™
demos

Check for presence of Intel
Performance Primitives Library
(IPPL)

Get value of Image Processing
Toolbox preference

Set Image Processing Toolbox
preferences or display valid values

Default display range of image based
on its class

Check validity of connectivity
argument

Check validity of array
Check validity of colormap



Miscellaneous Functions

iptchecknargin Check number of input arguments

iptcheckstrs Check validity of option string

iptnum2ordinal Convert positive integer to ordinal
string

Interactive Mouse Utility Functions

getline Select polyline with mouse
getpts Specify points with mouse
getrect Specify rectangle with mouse

Array Operations

padarray Pad array
Demos
iptdemos Index of Image Processing Toolbox
demos
Performance
ippl Check for presence of Intel
Performance Primitives Library
(IPPL)
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adapthisteq

Purpose Contrast-limited adaptive histogram equalization (CLAHE)
Syntax J = adapthisteq(I)
J = adapthisteq(I,parami,vali,param2,val2...)

Description J = adapthisteq(I) enhances the contrast of the grayscale image I
by transforming the values using contrast-limited adaptive histogram
equalization (CLAHE).

CLAHE operates on small regions in the image, called tiles, rather
than the entire image. Each tile’s contrast is enhanced, so that the
histogram of the output region approximately matches the histogram
specified by the 'Distribution’' parameter. The neighboring tiles are
then combined using bilinear interpolation to eliminate artificially
induced boundaries. The contrast, especially in homogeneous areas,
can be limited to avoid amplifying any noise that might be present in
the image.

J = adapthisteq(I,parami,vali,param2,val2...) specifies any
of the additional parameter/value pairs listed in the following table.
Parameter names can be abbreviated, and case does not matter.

Parameter Value

'"NumTiles' Two-element vector of positive integers specifying
the number of tiles by row and column, [M N].
Both M and N must be at least 2. The total number
of tiles is equal to M*N.

Default: [8 8]

'ClipLimit' Real scalar in the range [0 1] that specifies a
contrast enhancement limit. Higher numbers
result in more contrast.

Default: 0.01

17-2



adapthisteq

Parameter

Value

"NBins'

Positive integer scalar specifying the number of
bins for the histogram used in building a contrast
enhancing transformation. Higher values result
in greater dynamic range at the cost of slower
processing speed.

Default: 256

'Range’

String specifying the range of the output image
data.

‘original' — Range is limited to the range of
the original image, [min(I(:)) max(I(:))].

'full' — Full range of the output image class is
used. For example, for uint8 data, range is [0
255].

Default: 'full'

'Distribution’

String specifying the desired histogram shape for
the image tiles.

‘uniform' — Flat histogram
'rayleigh' — Bell-shaped histogram
"exponential' — Curved histogram

Default: 'uniform'

'Alpha’

Nonnegative real scalar specifying a distribution
parameter.

Default: 0.4

Note Only used when 'Distribution’ is set to
either 'rayleigh' or 'exponential’.
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|

Remarks ® 'NumTiles' specifies the number of rectangular contextual regions
(tiles) into which adapthisteq divides the image. adapthisteq
calculates the contrast transform function for each of these regions
individually. The optimal number of tiles depends on the type of the
input image, and it is best determined through experimentation.

e 'ClipLimit' is a contrast factor that prevents over-saturation
of the image specifically in homogeneous areas. These areas are
characterized by a high peak in the histogram of the particular image
tile due to many pixels falling inside the same gray level range.
Without the clip limit, the adaptive histogram equalization technique
could produce results that, in some cases, are worse than the original
image.

e 'Distribution’ specifies the distribution that adapthisteq uses
as the basis for creating the contrast transform function. The
distribution you select should depend on the type of the input image.
For example, underwater imagery appears to look more natural when
the Rayleigh distribution is used.

Class Grayscale image I can be of class uint8, uint16, int16, single, or
Suppori‘ double. The output image J has the same class as I.
Examples Apply Contrast-limited Adaptive Histogram Equalization (CLAHE) to

an image and display the results.

I imread('tire.tif');

A adapthisteq(I, 'clipLimit',0.02, 'Distribution', 'rayleigh');
figure, imshow(I);

figure, imshow(A);

Apply CLAHE to a color image.
[X MAP] = imread('shadow.tif');

[)

% Convert indexed image to true-color (RGB) format
RGB = ind2rgb(X,MAP);
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% Convert image to L*a*b* color space
cform2lab = makecform('srgb2lab');
LAB = applycform(RGB, cform2lab);

% Scale values to range from 0 to 1
L = LAB(:,:,1)/100;

% Perform CLAHE
LAB(:,:,1) = adapthisteq(L, 'NumTiles',...
[8 8], 'ClipLimit',0.005)*100;

% Convert back to RGB color space
cform2srgb = makecform('lab2srgb');
J = applycform(LAB, cform2srgb);

% Display the results

figure, imshow(RGB);
figure, imshow(J);

See Also histeq
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Purpose

Syntax

Description

Examples

Read metadata from header file of Analyze 7.5 data set

info = analyze75info(filename)
info analyze75info(filename, 'ByteOrder', endian)

info = analyze75info(filename) reads the header file of the Analyze
7.5 data set specified by the string filename. The function returns
info, a structure whose fields contain information about the data set.

Analyze 7.5 is a 3-D biomedical image visualization and analysis
product developed by the Biomedical Imaging Resource of the Mayo
Clinic. An Analyze 7.5 data set is made of two files, a header file and an
image file. The files have the same name with different file extensions.
The header file has the file extension .hdr and the image file has the
file extension .img. For more information about Analyze 7.5 format
metadata returned in info, see the Mayo Clinic Web site.

info = analyze75info(filename, 'ByteOrder', endian) reads the
Analyze 7.5 header file using the byte ordering specified by endian,
where endian can have either of the following values:

Value Meaning
'ieee-le' Byte ordering is Little Endian
'ieee-be' Byte ordering is Big Endian

If the specified endian value results in a read error, analyze75info
issues a warning message and attempts to read the header file with
the opposite ByteOrder format.

Read an Analyze 7.5 header file. The file used in the example can be
downloaded from http://www.radiology.uiowa.edu/downloads/.

info = analyze75info('CT_HAND.hdr');

Specify the byte ordering of the data set.

info = analyze75info('CT_HAND', 'ByteOrder', 'ieee-be');


http://www.mayo.edu/bir/PDF/ANALYZE75.pdf
http://www.radiology.uiowa.edu/downloads/

analyze75info

See Also analyze75read
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Purpose

Syntax

Description

Examples

Read image data from image file of Analyze 7.5 data set

X = analyze75read(filename)
X = analyze75read(info)
X = analyze75read(filename) reads the image data from the image

file of an Analyze 7.5 format data set specified by the string filename.
The function returns the image data in X. For single-frame, grayscale
images, X is an m-by-n array. analyze75read uses a data type for X that
is consistent with the data type specified in the data set header file.

Analyze 7.5 is a 3-D biomedical image visualization and analysis
product developed by the Biomedical Imaging Resource of the Mayo
Clinic. An Analyze 7.5 data set is made of two files, a header file and an
image file. The files have the same name with different file extensions.
The header file has the file extension .hdr and the image file has the
file extension .img. For more information about the Analyze 7.5 format,
see the Mayo Clinic Web site.

X = analyze75read(info) reads the image data from the image
file specified in the metadata structure info. info must be a valid
metadata structure returned by the analyze75info function.

Note analyze75read returns image data in radiological orientation
(LAS). This is the default used by the Analyze 7.5 format.

Example 1

Read image data from an Analyze 7.5 image file. The
file used in the example can be downloaded from
http://www.radiology.uiowa.edu/downloads/.

X = analyze75read('CT_HAND');

Because Analyze 7.5 format uses radiological orientation (LAS), flip the
data for correct image display in MATLAB®,


http://www.mayo.edu/bir/PDF/ANALYZE75.pdf
http://www.radiology.uiowa.edu/downloads/

analyze75read

Class
Support

See Also

X = flipdim(X,1);

Select frames 51 to 56 and use reshape to create an array for montage.

Y = reshape(X(:,:,51:56),[size(X,1) size(X,2) 1 6]);
montage(Y);

Example 2

Call analyze75read with the metadata obtained from the header file
using analyze75info.

info = analyze75info('CT_HAND.hdr');
X = analyze75read(info);

X can be logical, uint8, int16, int32, single, or double. Complex
and RGB data types are not supported.

analyze75info
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applycform

Purpose
Syntax

Description

Class
Support

Examples

17-10

Apply device-independent color space transformation
B = applycform(A,C)

B = applycform(A,C) converts the color values in A to the color
space specified in the color transformation structure C. The color
transformation structure specifies various parameters of the
transformation. See makecform for details.

If A is two-dimensional, each row is interpreted as a color. A can have
either three or more columns, depending on the input color space. B has
the same number of rows and either three or four columns, depending
on the output color space. (The ICC spec currently supports up to
15-channel device spaces.)

If A is three-dimensional, each row-column location is interpreted as a

color, and size (A, 3) is typically either three or more, depending on the
input color space. B has the same number of rows and columns as A, and
size(B,3) is either three or more, depending on the output color space.

A must be a real, nonsparse array of class uint8, uint16, or double. The
output array B has the same class as A, unless the output space is XYZ.
If the input is XYZ data of class uint8, the output is of class uint16,

because there is no standard 8-bit encoding defined for XYZ color values.

Read in a color image that uses the sRGB color space.
rgb = imread('peppers.png');

Create a color transformation structure that defines an sRGB to L*a*b*
conversion.

C = makecform('srgh2lab');

Perform the transformation with applycform.

lab = applycform(rgb,C);



applycform

See Also lab2double, 1ab2uint8, 1ab2uint16, makecform, whitepoint,
xyz2double, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-22.
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applylut

Purpose
Syntax

Description
Class

Support

Algorithm

17-12

Neighborhood operations on binary images using lookup tables
A = applylut(BW,LUT)

A = applylut(BW,LUT) performs a 2-by-2 or 3-by-3 neighborhood
operation on binary image BW by using a lookup table (LUT). LUT is
either a 16-element or 512-element vector returned by makelut. The
vector consists of the output values for all possible 2-by-2 or 3-by-3
neighborhoods.

BW can be numeric or logical, and it must be real, two-dimensional, and
nonsparse. LUT can be numeric or logical, and it must be a real vector
with 16 or 512 elements. If all the elements of LUT are 0 or 1, then A is
logical. If all the elements of LUT are integers between 0 and 255, then A
is uint8. For all other cases, A is double.

applylut performs a neighborhood operation on a binary image by
producing a matrix of indices into 1ut, and then replacing the indices
with the actual values in lut. The specific algorithm used depends on
whether you use 2-by-2 or 3-by-3 neighborhoods.

2-by-2 Neighborhoods

For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in
each neighborhood, and two possible states for each pixel, so the total
number of permutations is 2* = 16.

To produce the matrix of indices, applylut convolves the binary image
BW with this matrix.

8 2
4 1

The resulting convolution contains integer values in the range [0,15].
applylut uses the central part of the convolution, of the same size

as BW, and adds 1 to each value to shift the range to [1,16]. It then
constructs A by replacing the values in the cells of the index matrix with
the values in 1ut that the indices point to.



applylut

Examples

3-by-3 Neighborhoods

For 3-by-3 neighborhoods, 1length(lut) is 512. There are nine pixels in
each neighborhood, and two possible states for each pixel, so the total
number of permutations is 2° = 512.

To produce the matrix of indices, applylut convolves the binary image
BW with this matrix.

256 32 4
128 16 2
64 8 1

The resulting convolution contains integer values in the range [0,511].
applylut uses the central part of the convolution, of the same size

as BW, and adds 1 to each value to shift the range to [1,512]. It then
constructs A by replacing the values in the cells of the index matrix with
the values in lut that the indices point to.

Perform erosion using a 2-by-2 neighborhood. An output pixel is on only
if all four of the input pixel’s neighborhood pixels are on.

lut = makelut('sum(x(:)) == 4',2);
BW = imread('text.png');

BW2 = applylut(BW,lut);
imshow(BW), figure, imshow(BW2)

The term watershed The term watershed
refers to aridge that ... refers to a ridge that ...
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See Also makelut
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axes2pix

Purpose
Syntax

Description

Class
Support

Note

Examples

See Also

Convert axes coordinates to pixel coordinates

pixelx = axes2pix(dim, XDATA, AXESX)

pixelx = axes2pix(dim, XDATA, AXESX) converts an axes coordinate
into a pixel coordinate. For example, if pt = get(gca, 'CurrentPoint')
then AXESX could be pt(1,1) or pt(1,2). AXESX must be in pixel
coordinates. XDATA is a two-element vector returned by
get(image_handle, 'XData') or get(image_handle, 'YData'). dim
is the number of image columns for the x coordinate, or the number of
image rows for the y coordinate.

dim, XDATA, and AXESX can be double. The output is double.

axes2pix performs minimal checking on the validity of AXESX, DIM, or
XDATA. For example, axes2pix returns a negative coordinate if AXESX is
less than XDATA(1). The function calling axes2pix bears responsibility
for error checking.

Example with default XData and YData.

h = imshow('pout.tif');

[nrows,ncols] = size(get(h,'CData'));
xdata = get(h, 'XData')

ydata = get(h,'YData')

px = axes2pix(ncols,xdata,30)

py = axes2pix(nrows,ydata,30)

Example with non-default XData and YData.

xdata [10 100]
ydata [20 90]
px = axes2pix(ncols,xdata,30)
py = axes2pix(nrows,ydata,30)

impixelinfo, bwselect, imfill, impixel, improfile, pixval, roipoly
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bestblk

Purpose

Syntax

Description

Algorithm

Examples

See Also

17-16

Determine optimal block size for block processing

siz = bestblk([m n],k)
[mb,nb] = bestblk([m n],k)

siz = bestblk([m n],k) returns, for an m-by-n image, the optimal
block size for block processing. k is a scalar specifying the maximum
row and column dimensions for the block; if the argument is omitted,
it defaults to 100. The return value siz is a 1-by-2 vector containing
the row and column dimensions for the block.

[mb,nb] = bestblk([m n],k) returns the row and column dimensions
for the block in mb and nb, respectively.

bestblk returns the optimal block size given m, n, and k. The algorithm
for determining siz is

¢ Ifmis less than or equal to k, return m.

e Ifmis greater than k, consider all values between min(m/10,k/2)
and k. Return the value that minimizes the padding required.

The same algorithm is then repeated for n.

siz = bestblk([640 800],72)
siz =
64 50
blkproc



blkproc

Purpose

Syntax

Description

Class
Support

Distinct block processing for image

B = blkproc(A,[m n],fun)

B = blkproc(A,[m n],[mborder nborder],fun)

B = blkproc(A, 'indexed',...)

B = blkproc(A,[m n],fun) processes the image A by applying the

function fun to each distinct m-by-n block of A, padding A with 0’s if
necessary. fun is a function handle that accepts an m-by-n matrix, x, and
returns a matrix, vector, or scalar y.

y = fun(x)

blkproc does not require that y be the same size as x. However, B is the
same size as A only if y is the same size as x.

B = blkproc(A,[m n],[mborder nborder],fun) defines an
overlapping border around the blocks. blkproc extends the original
m-by-n blocks by mborder on the top and bottom, and nborder on the left
and right, resulting in blocks of size (m+2*mborder)-by-(n+2*nborder).
The blkproc function pads the border with 0’s, if necessary, on the
edges of A. The function fun should operate on the extended block.

The line below processes an image matrix as 4-by-6 blocks, each having
a row border of 2 and a column border of 3. Because each 4-by-6 block
has this 2-by-3 border, fun actually operates on blocks of size 8-by-12.

B = blkproc(A,[4 6],[2 3],fun)

B = blkproc(A, 'indexed',...) processes A as an indexed image,
padding with 0’s if the class of Ais uint8 or uint16, or 1’s if the class
of A is double.

The input image A can be of any class supported by fun. The class of B
depends on the class of the output from fun.
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Compute the 2-D DCT of each 8-by-8 block to the standard deviation
of the elements in that block. In this example, fun is specified as a

function handle created using @.

Examples

I = imread('cameraman.tif');
fun = @dct2;

J = blkproc(I,[8 8],fun);
imagesc(J), colormap(hot)

el L] =0 om =)

Set the pixels in each 16-by-16 block to the standard deviation of
the elements in that block. In this example, fun is specified as an

anonymous function.

I = imread('liftingbody.png');

fun = @(x) std2(x)*ones(size(x));

I2 = blkproc(I,[32 32],fun);

imshow(I), figure, imshow(I2,'DisplayRange',[])
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Image Courtesy of NASA

See Also bestblk, colfilt, nlfilter, function_handle
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brighten

Purpose Brighten or darken colormap

Note brighten is a MATLAB® function.
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bwarea

Purpose
Syntax

Description

Class
Support

Algorithm

Examples

Area of objects in binary image
total = bwarea(BW)

total = bwarea(BW) estimates the area of the objects in binary image
BW. total is a scalar whose value corresponds roughly to the total
number of on pixels in the image, but might not be exactly the same
because different patterns of pixels are weighted differently.

BW can be numeric or logical. For numeric input, any nonzero pixels are
considered to be on. The return value total is of class double.

bwarea estimates the area of all of the on pixels in an image by
summing the areas of each pixel in the image. The area of an individual
pixel is determined by looking at its 2-by-2 neighborhood. There are six
different patterns, each representing a different area:

¢ Patterns with zero on pixels (area = 0)

® Patterns with one on pixel (area = 1/4)

® Patterns with two adjacent on pixels (area = 1/2)

® Patterns with two diagonal on pixels (area = 3/4)

¢ Patterns with three on pixels (area = 7/8)

® Patterns with all four on pixels (area = 1)

Keep in mind that each pixel is part of four different 2-by-2

neighborhoods. This means, for example, that a single on pixel
surrounded by off pixels has a total area of 1.

Compute the area in the objects of a 256-by-256 binary image.

BW = imread('circles.png');
imshow(BW) ;
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bwarea (BW)

ans =

1.4187e+004
See Also bweuler, bwperim

References [1] Pratt, William K., Digital Image Processing, New York, John Wiley
& Sons, Inc., 1991, p. 634.
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Purpose

Syntax

Description

Class
Support

Morphologically open binary image (remove small objects)

BW2 = bwareaopen(BW,P)
BW2 bwareaopen (BW,P,conn)

BW2 = bwareaopen(BW,P) removes from a binary image all connected

components (objects) that have fewer than P pixels, producing another
binary image, BW2. The default connectivity is 8 for two dimensions, 26
for three dimensions, and conndef (ndims (BW), 'maximal') for higher
dimensions.

BW2 = bwareaopen(BW,P,conn) specifies the desired connectivity. conn
can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood
8 8-connected neighborhood
Three-dimensional connectivities

6 6-connected neighborhood
18 18-connected neighborhood
26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

BW can be a logical or numeric array of any dimension, and it must be
nonsparse. The return value BW2 is of class logical.
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Algorithm

Examples
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The basic steps are

1 Determine the connected components.

L = bwlabeln(BW, conn);

2 Compute the area of each component.
S = regionprops(L, 'Area');

3 Remove small objects.

bw2 = ismember(L, find([S.Area] >= P));

Read in the image and display it.

originalBW = imread('text.png');
imshow(originalBW)

The term watershed
refers to aridge that ...
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Remove all objects smaller than 50 pixels. Note the missing letters.

bwAreaOpenBW = bwareaopen(originalBW,50);
figure, imshow(bwAreaOpenBW)



bwareaopen
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See Also bwlabel, bwlabeln, conndef, regionprops
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Purpose

Syntax

Description

17-26

Trace region boundaries in binary image

bwboundaries (BW)
bwboundaries (BW,conn)
bwboundaries (BW,conn,options)
[B,L] = bwboundaries(...)
[B,L,N,A] = bwboundaries(...)

W @
I

B = bwboundaries (BW) traces the exterior boundaries of objects, as
well as boundaries of holes inside these objects, in the binary image BW.
bwboundaries also descends into the outermost objects (parents) and
traces their children (objects completely enclosed by the parents). BW
must be a binary image where nonzero pixels belong to an object and
0 pixels constitute the background. The following figure illustrates
these components.

- Hale
Parent

! - -=—— farent
abject

Chid ———— =

bwboundaries returns B, a P-by-1 cell array, where P is the number of
objects and holes. Each cell in the cell array contains a Q-by-2 matrix.
Each row in the matrix contains the row and column coordinates

of a boundary pixel. Q is the number of boundary pixels for the
corresponding region.

B = bwboundaries(BW,conn) specifies the connectivity to use when
tracing parent and child boundaries. conn can have either of the
following scalar values.



bwboundaries

Class
Support

Value Meaning
4 4-connected neighborhood
8 8-connected neighborhood. This is the default.

B = bwboundaries(BW,conn,options) specifies an optional argument,
where options can have either of the following values:

Value Meaning
'holes' Search for both object and hole boundaries. This is the
default.

‘noholes'| Search only for object (parent and child) boundaries. This
can provide better performance.

[B,L] = bwboundaries(...) returns the label matrix L as the second
output argument. Objects and holes are labeled. L is a two-dimensional
array of nonnegative integers that represent contiguous regions. The
kth region includes all elements in L that have value k. The number
of objects and holes represented by L is equal to max(L(:)). The
zero-valued elements of L make up the background.

[B,L,N,A] = bwboundaries(...) returns N, the number of objects
found, and A, an adjacency matrix. The first N cells in B are object
boundaries. A represents the parent-child-hole dependencies. A is a
square, sparse, logical matrix with side of length max (L(:)), whose
rows and columns correspond to the positions of boundaries stored in B.

The boundaries enclosed by a B{m} as well as the boundary enclosing
B{m} can both be found using A as follows:

enclosing_boundary = find(A(m,:));
enclosed_boundaries find(A(:,m));

BW can be logical or numeric and it must be real, two-dimensional, and
nonsparse. L and N are double. Ais sparse logical.
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Examples
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Example 1

Read in and threshold an intensity image. Display the labeled objects
using the jet colormap, on a gray background, with region boundaries
outlined in white.

I = imread('rice.png');
BW = im2bw(I, graythresh(I));
[B,L] = bwboundaries(BW, 'noholes');
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:1length(B)
boundary = B{k};
plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
end

Example 2

Read in and display a binary image. Overlay the region boundaries on
the image. Display text showing the region number (based on the label
matrix) next to every boundary. Additionally, display the adjacency
matrix using the MATLAB® spy function.

After the image is displayed, use the zoom tool to read individual labels.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries (BW);
figure, imshow(BW); hold on;
colors=['b' 'g" 'r' '¢c' 'm" 'y'];
for k=1:length(B)
boundary = B{k};
cidx = mod(k,length(colors))+1;
plot(boundary(:,2), boundary(:,1),...
colors(cidx), 'LineWidth',2);
%srandomize text position for better visibility
rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
col = boundary(rndRow,2); row = boundary(rndRow,1);
h = text(col+1, row-1, num2str(L(row,col)));
set(h,'Color',colors(cidx),...
'FontSize',14, 'FontWeight', 'bold');
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end
figure; spy(A);

Example 3

Display object boundaries in red and hole boundaries in green.

BW = imread('blobs.png');
[B,L,N] = bwboundaries(BW);
figure; imshow(BW); hold on;
for k=1:1length(B),
boundary = B{k};
if(k > N)
plot(boundary(:,2),...
boundary(:,1),'g"', 'LineWidth',2);
else
plot(boundary(:,2),...
boundary(:,1),'r', 'LineWidth',2);
end
end

Example 4

Display parent boundaries in red (any empty row of the adjacency
matrix belongs to a parent) and their holes in green.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries (BW);
figure; imshow(BW); hold on;
for k=1:length(B),
if(~sum(A(k,:)))
boundary = B{k};
plot(boundary(:,2),...
boundary(:,1),'r','LineWidth',2);
for 1=find(A(:,k))"'
boundary = B{1l};
plot(boundary(:,2),...
boundary(:,1),'g', 'LineWidth',2);
end
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end
end

See Also bwlabel, bwlabeln, bwperim, bwtraceboundary
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Purpose

Syntax

Description

Distance transform of binary image

D = bwdist(BW)
[D,L] = bwdist(BW)
[D,L] = bwdist(BW,method)

D = bwdist(BW) computes the Euclidean distance transform of the
binary image BW. For each pixel in BW, the distance transform assigns a
number that is the distance between that pixel and the nearest nonzero
pixel of BW. bwdist uses the Euclidean distance metric by default. BW
can have any dimension. D is the same size as BW.

[D,L] = bwdist(BW) also computes the nearest-neighbor transform
and returns it as label matrix L, which has the same size as BW and
D. Each element of L contains the linear index of the nearest nonzero
pixel of BW.

[D,L] = bwdist(BW,method) computes the distance transform, where
method specifies an alternate distance metric. method can take any of
the following values. The method string can be abbreviated.

Method Description

'chessboard' In 2-D, the chessboard distance between
(X15Y7) and (X55Y5) is

max( P’Ii —.1;2|, |}'1 —}'2|J

'cityblock' In 2-D, the cityblock distance between (x;,y;)
and (X,,Y,) is

ey = xa| + [y1 -39
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Method Description

'euclidean' In 2-D, the Euclidean distance between
(X1,¥1) and (X,,Y,) is

2 2
W1 =xg) +(31-70)
This is the default method.

‘quasi-euclidean’' | In 2-D, the quasi-Euclidean distance between
(x1,¥1) and (X,,Y,) is

|.1;1 —.1;2| + Ifql"i - 1J|_}'1 —}'Ql, |-1'1 —-1'2| > |}'1 _.}'2|

(2 - 1J|.1;1 —.1;2| + |_}'1 —}'2|,oﬂwrwise

Note bwdist uses fast algorithms to compute the true Euclidean
distance transform, especially in the 2-D case. The other methods
are provided primarily for pedagogical reasons. However, the
alternative distance transforms are sometimes significantly faster for
multidimensional input images, particularly those that have many
nonzero elements.

Class BW ca